GAUS AG ON EXODROMY

1. TIME AND PLACE

Fridays, 10:15–11:45, 05-514. Exception: the first two talks are on Thursdays, 12:30–14:00.

2. References

The main reference is

• *Exodromy* by Clark Barwick, Saul Glasman and Peter Haine, available at https://arxiv.org/ abs/1807.03281.

Other useful references are:

- *Higher Topos Theory* by Jacob Lurie, available at https://www.math.ias.edu/~lurie/papers/ HTT.pdf
- *Higher Algebra* by Jacob Lurie, available at https://www.math.ias.edu/~lurie/papers/HA.pdf

3. Program

26.10.	Introduction	Tom	
2.11.	Stratified spaces	Alisa	Briefly explain the notion of a stratified topolog-
			ical space and how it relates to stratified spaces,
			i.e. $\$1.2$ & Theorem 2.1.2. Then treat the rest of
			2.1-2.5.
10.11.	Spatial décollage	Linus	Explain the complete segal space model for ∞ -categories. Then treat §2.6–2.8.
17.11.	∞ -topoi	Timo	Definition of ∞ -topos [HTT, Def. 6.1.0.4], state-
			ment of Giraud's axioms [HTT, Thm. 6.1.0.6].
			Define the ∞ -topos of sheaves on a Grothendieck
			topology [HTT, Prop. 6.2.2.7]. Define the cate-
			gory of ∞ -topoi [HTT, §6.1.3]. Sketch the defini-
			tion of an n -topos [HTT, §6.1.4].
24.11.	Bounded coherent ∞ -topoi	Luca	3.1-3.7, 3.11
1.12.	Shape theory	Lorenzo	§4.2, statement of Proposition 4.3.5. Explain the
			definition of the shape §4.4. Deduce Stone duality
			(Theorem 4.4.3) from Proposition 4.3.5. Explain
0.10		a	4.4.10, 4.4.14, 4.4.16, 4.4.18–4.4.21.
8.12.	Oriented fibre products	Georg	5.1, 5.2.1, 5.3-5.4
15.12.	Sites for oriented fiber products	Tom	§5.5–§5.6
22.12.	Local ∞ -topol	Klaus	
12.1.	Beck–Chevalley conditions	:	Explain as much as manageable about Theorem
10.1		9	
19.1. 96-1	Gluing squares	: 2	95.2, 98.0
20.1.	Stratified figher topol	<u>.</u>	98.1-98.4, $98.0-98.8$. The main result you should aim for is Proposition 8.8.6.
2.2.	Spectral higher topoi	?	Define spectral higher topoi and prove Theorem
			9.3.1. Explain Proposition 9.5.4 and Theorem
			10.1.8.
9.2.	Galois categories	Marcin	Explain §12.1. Then treat some enjoyable subset
			of §14.4 and §14.5.