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We prove homological mirror symmetry for elliptic curves. This is done by
applying the methods Seidel developed for quartic surfaces to the much easier
one-dimensional case. We state and prove as many preliminary definitions
and results as space permits.

After the abstract proof is finished, we determine the mirror map, and
illustrate the mirror correspondence.
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1. Introduction

Mirror symmetry was observed by physicists working on so-called superconformal string
theories. In particular, given an algebraic Calabi-Yau manifold X, physicists predict the
existence of a “mirror” symplectic manifold X∨ (also Calabi-Yau) and various relations
between the two, which can crudely be summarized as

algebraic geometry on X ←→ symplectic geometry on X∨. (1)

One book attempting to fill in the vagueness of “↔” in our crude summary above is [3].
A (superficially) rather different approach to filling in the vagueness was presented

by Kontsevich at the ICM in 1994 [10]. He formulated a set of conjectures, nowadays
summarised as “homological mirror symmetry”, distilling many of the physicists’ claims
into a categorical framework, which we briefly describe.

We start with an algebraic Calabi-Yau variety X. One category encoding almost all
of the geometry of X is the bounded derived category of coherent sheaves Db(Coh(X)).
It is the category obtained from the category of bounded cochain complexes of coherent
sheaves on X by inverting the quasi-isomorphisms. This is not an abelian category. It
is however additive, and comes with certain extra structure known as a shift functor
and distinguished triangles. This extra data is usually axiomatized under the heading
“triangulated category”. (Chapter ten of [23] is a good reference for triangulated and
derived categories in this sense, but beware that we will usually mean something else in
the main text.) This is Kontsevich’s interpretation of the right hand side of “equation”
(1): the bounded derived category of coherent sheaves on X, viewed as a triangulated
category.
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Consider now a symplectic Calabi-Yau Y (that is to say, a real smooth manifold with
vanishing first Chern class, together with a choice of closed non-degenerate two-form
ωY ). Building on work of Fukaya, Kontsevich conjectures the existence of the so-called
split-closed triangulated derived Fukaya category H0DπFuk(Y ), and this is Kontsevich’s
interpretation of the right hand side of (1). Up to understanding what H0DπFuk(Y ) is,
the homological mirror symmetry conjecture can be formulated now as follows:

Conjecture (Kontsevich). Let X be a projective Calabi-Yau manifold. There exists a
symplectic manifold X∨ and an equivalence of triangulated categories

Db(Coh(X)) ' H0DπFuk(X∨).

As a first approximation, the objects of Fuk(Y ) consist of compact Lagrangian sub-
manifolds of Y (i.e. submanifolds L such that ωY |L = 0). These are in particular half-
dimensional, so in good cases (transversal intersection), the set of intersection points
of two Lagrangian submanifolds L1 ∩ L2 is finite. We take these intersection points to
be (formal) generators of a vector space (usually called Floer chain complex) which we
denote HomFuk(Y )(L1, L2). As the name suggests, this will carry a differential, and we
will have HomH0DπFuk(Y )(L1, L2) = H0 HomFuk(Y )(L1, L2). That is to say, the derived
Fukaya category of Kontsevich’s conjecture is obtained from a “chain-level” category
Fuk(Y ) by taking cohomology.

This is glossing over a variety of difficulties which we want to at least mention. (1)
There is an obvious problem when L1 and L2 do not intersect transversely, and this is
actually very hard to fix. (2) We have not defined the differential, and also not how
to compose morphisms. In nice cases, this can be done using Lagrangian intersection
Floer theory. This means that differentials and compositions are computed by counting
immersed bigons and triangles (up to a certain equivalence relation). While after taking
cohomology this does indeed turn out to yield an ordinary category, the chain level
structure is very complicated. In particular, chain-level composition is not associative.
This is remedied by higher composition operations (also defined by counting polygons,
with more sides) which serve as homotopies measuring the failure of associativity. The
algebraic structure we obtain is usually called an A∞-category. (3) It turns out that the
category H0Fuk(Y ) is not particularly nice. For example, idempotent endomorphisms
need not correspond to subobjects. Also H0Fuk(Y ), while additive, is neither abelian
nor triangulated. There is, however a purely algebraic procedure, called “forming the
split-closed triangulated envelope” which from Fuk(Y ) constructs a new A∞-category
DπFuk(Y ) such that H0DπFuk(Y ) has these nice properties (i.e. it comes with a natural
triangulation, and idempotent endomorphisms correspond to subobjects). It is this final
category which is supposed to be triangle-equivalent to the bounded derived category.

There is one shortcoming in Kontsevich’s conjecture, at least as stated. This has to
do with the observation that results at the level of cohomology should really be shadows
of chain-level phenomena. For example the derived category, while a natural category
to state results in, is actually rather awkward to work with (e.g. because the derived
category of X cannot be recovered from the derived categories of an open cover by
“gluing”). One should hence try to find a natural “chain-level” category D∞(X) such
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that H0D∞(X) ' Db(Coh(X)). Fortunately, such categories are well known (and in
fact used to prove existence of Db(Coh(X)) in the first place). Moreover, the concept of
an A∞-category applies in an obvious way to D∞(X) (we in fact obtain a particularly
simple A∞-structure known as dg-category). We can thus state an improved version of
Kontsevich’s conjecture as follows:

Conjecture (Kontsevich, chain-level). Let X be a projective Calabi-Yau manifold. There
exists a symplectic manifold X∨ and a morphism of A∞-categories

D∞(X)→ DπFuk(X∨)

inducing an isomorphism after passing to cohomology.

This conjecture has now been established for all Calabi-Yau hypersurfaces (in projec-
tive space). The case of elliptic curves (dimension one) has been known the longest and
was established in a series papers of Polishchuk and Zaslow [17] [14] [15] [16]. Quartic
threefolds (dimension two) were treated by Seidel [19]. The case of dimension ≥ 3 was
established by Sheridan [21].

The main aim of this essay is to present a proof of the first non-trivial case of Kont-
sevich’s conjecture, i.e. for elliptic curves. This is done by applying the refined methods
developed by Seidel for quartic surfaces to the much easier one-dimensional case. In
doing so we essentially follow [11], at least in spirit (in practice we aim to prove much
less, and can thus cut some corners).

This essay has two secondary aims: firstly to develop the relatively large amount
of background material needed to state precisely, and eventually prove, Kontsevich’s
conjecture. Secondly, we wish to illustrate both the techniques used in the proof of
homological mirror symmetry, and the extraordinary “coincidences” which are required
to identify the symplectic and algebraic geometry sides of the mirror pair.

Organisation of this essay We sketch the basic argument presented in this essay.
In section 2 we define A∞-categories, and the important notions of A∞-functor, trian-

gulated A∞-category and split-closed A∞-category. We state general existence results
for triangulated and split-closed envelopes. All of this is preparation, so that we can
state the main theorem from homological algebra we will use:

Theorem. Suppose A and B are two split-closed A∞-categories, split-generated (respec-
tively) by X1, . . . , Xn and Y1, . . . , Ym. Let A′ = HomA(X1 ⊕ · · · ⊕ Xn, X1 ⊕ · · · ⊕ Xn),
and similarly for B′. These are A∞-algebras.

Then any quasi-isomorphism (i.e. morphism which induces an isomorphism in coho-
mology) A′ → B′ extends canonically to a quasi-equivalence A → B (i.e. an A∞-functor
which induces an equivalence in cohomology).

We apologize for the fact that this section consists mainly of definitions and statements
of theorems. It provides the homological algebra underpinning the rest of this essay. For
reasons of space we cannot elaborate on the proofs or illustrate the diverse uses of A∞-
structures. The reader is advised to read only subsection 2.1 and to refer to the other
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subsections as needed. If she already knows enough about A∞-categories to understand
the above theorem, the first section can be safely skipped and only referred to as needed.

In section 3 we make first contact with geometry and construct an interesting A∞-
category. Namely, using injective resolutions, we construct a dg-enhancement D∞(X)
of the bounded derived category of coherent sheaves on a scheme X. We prove that if
X is regular projective over an algebraically closed field, then D∞(X) is generated by
the powers of an ample line bundle. If X is furthermore one-dimensional (i.e. a smooth
curve), we deduce that in fact a line bundles OX and OX(P ) suffice.

In particular, ifX is an elliptic curve, then we obtain a dg-algebraQ = HomD∞(X)(OX⊕
OX(P ),OX ⊕OX(P )) of “relations”, and its cohomology algebra Q = H(Q) is a finite-
dimensional quiver algebra which is easy to determine explicitly. In order to apply the
above theorem, we need to find similar generators for the Fukaya category.

Before that, of course, we have to define the Fukaya category. This we do in section 4.
We first introduce some basic symplectic geometry, and then describe Seidel’s “graded
symplectic geometry”. This is the basic building block of the Fukaya category. We
then describe how to construct the A∞-structure on subsets of the Fukaya category
represented by transverse Lagrangians. We need to apologize in advance to the reader
for being incomplete here, even in two regards: firstly we do not deal with the non-
transverse case. Doing this would lead us too far astray. For the computations in
this essay, ad-hoc methods of resolving this problem suffice, provided we assume that
a consistent construction of the Fukaya category exists and has the good properties we
claim. Secondly, even for the transverse we do not provide the full definition of certain
sign conventions, and no proof of the good properties we claim. The latter is due to
space constraints, and the former is because these signs are of no use for us, other than
establishing the good properties.

Accepting this description of the Fukaya category, we can press on with the proof
of the mirror symmetry conjecture. Using the properties of the Fukaya category, it
is easy to show that for a torus T , two meridians A and B generating the homology
also generate the Fukaya category. We thus obtain an A∞-algebra of relations Q′ =
HomDFuk(T )(A ⊕ B,A ⊕ B). In order to apply the above theorem, we need to find a
quasi-isomorphism Q′ → Q. As on the algebraic side, computing H(Q′) is fairly easy,
and one sees by direct comparison that H(Q′) ' Q.

At this point one of the strengths of the A∞-picture becomes evident: by the so-called
“homological perturbation theory”, given any A∞-algebra A with cohomology algebra
A, we can find an A∞-structure (md) on A with vanishing differential m1 such that
A is quasi-isomorphic to (A, (md)). We may thus trade the chain-level information on
A for higher multiplications on A. Applying this to Q and Q′, we end up with two
A∞-structures (md) and (m′d) on Q, and it remains to show that these are isomorphic.

At this point we turn the problem on its head: in section 5, we present some re-
sults about the Hochschild cohomology of graded algebras. In particular we show how
Hochschild cohomology computations can be used to classify the A∞-structures on a
graded algebra extending the given multiplication.

Our aim now becomes to classify all A∞-structures on Q. The key insight of Lekili and
Perutz [11] is that almost all of these actually come from elliptic curves by the process
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described above (there are two exceptions, coming from singular cubic curves). We tie
together the argument by proving this key result in section 6. This finishes the abstract
proof of Kontsevich’s conjecture in the case of elliptic curves.

We then present various extensions and applications in section 7. First, we describe
how to actually find the mirror elliptic curve corresponding to the flat torus. This is
essentially a polygon counting procedure using a reconstruction theorem we proved along
the way in section 6. It has been carried out by Zaslow [24]. We sketch the required
computation and report on his result. In the remainder of this section, we illustrate
further details of the mirror correspondence. In particular, we explain how the standard
SL2(Z) action on the torus yields a braid action on the Fukaya category, and identify
the corresponding braid action on the derived category of coherent sheaves.

Notation and conventions Whenever we say chain complex, we mean cochain complex.
Similarly, all our graded vector spaces are index cohomologically. We use Koszul sign
conventions for tensor products of complexes and graded vector spaces. In particular, if
U, V,W,Z are graded vector spaces and f : U → V, g : W → Z are graded maps, then
we denote by f ⊗ g : U ⊗W → V ⊗ Z the map (f ⊗ g)(x ⊗ y) = (−1)|g||x|f(x) ⊗ g(y),
where |x| denotes the degree of the element x, and similarly |f | denotes the degree of
the graded map f. For graded vector spaces, Hom denotes the degree-zero maps. The
shifts of a graded vector space V are denoted V (i), the shifts of a chain complex C are
denoted C[i].

If X is a scheme and P is a point, we denote by OX/P the skyscraper sheaf k(P ) at
P, where k(P ) = OX,P /mX,P is the residue field at P.

For various objects for which it makes sense, we denote by X∨ the dual. This applies
for example to O-modules on a scheme, or vector spaces. Similarly, by 1 or 1X we
denote in various contexts the identity map (on X). Isomorphisms (or equivalences of
categories) are denoted by ' or

∼−→ . We use no special notation for quasi-isomorphisms,
homotopy-equivalences or the like.

We denote by Λt the universal Novikov field over the complex numbers, see section
4.4.

Acknowledgements Many people have helped me in learning this material. I would
like to thank in particular Ivan Smith for supervising the essay, Ian Grojnowski for many
explanations on homological algebra and algebraic geometry, Yanki Lekili for presenting
his paper in a seminar and answering questions I had on symplectic geometry, and Emile
Bouaziz for general discussions and pointers to the literature.

2. A∞-categories

We now define A∞-categories, the building block of the homological mirror symmetry
conjecture. As explained in the introduction, this section will be as brief as possible,
essentially without any proofs.
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A good introduction to A∞-algebras is [9]. A more comprehensive account is in the
first part of [20]. Beware that these two sources use differing sign conventions. We follow
the first.

2.1. Basic definitions

We fix a field (or possibly ring) k. We will say vector space even when we actually mean
module (in the unusual case that k is not a field).

Definition. An A∞-category C consist of the following data: a class Ob(C) of objects of
C, for each pair X,Y ∈ C a graded vector space HomC(X,Y ), and for each set of objects
X0, . . . , Xn ∈ Ob(C), a linear map

mC,X0,...,Xn
n : HomC(Xn−1, Xn)⊗ . . .⊗HomC(X0, X2)→ HomC(X0, Xn)(2− d).

We require that, for each set of objects X0, . . . , Xn ∈ Ob(A), the following A∞-relation
has to be satisfied:∑

a+b+c=n

(−1)a+bcm
C,X0,...,Xc,Xb+c,...,Xn
a+1+b (1⊗a ⊗mC,Xc,...,Xc+bb ⊗ 1⊗c) = 0.

We immediately lighten the notation: instead of X ∈ Ob(C) we will just write X ∈ C,
and instead of mC,X0,...,Xn

n we will write mCn or even just mn.
The defining equation looks somewhat peculiar (see section 5 for a re-interpretation).

We write them out for the first few values of n, in the case X0 = X1 = · · · = X:

m1m1 = 0

−m2(1⊗m1 +m1 ⊗ 1) +m1m2 = 0

m3(1⊗ 1⊗m1 + 1⊗m1 ⊗ 1 +m1 ⊗ 1⊗ 1) +m2(−1⊗m2 +m2 ⊗ 1) +m1m3 = 0.

The first of these says that m1 : Hom(X,X) → Hom(X,X) is an ordinary (graded)
differential, and the second says that m2 is a derivation with respect to m1. In particular,
upon passing to cohomology, m2 descends to a well-defined bilinear operation. The
third equation can perhaps be more usefully written as m2(1 ⊗ m2) − m2(m2 ⊗ 1) =
m1m3 + m3(1 ⊗ 1 ⊗m1 + 1 ⊗m1 ⊗ 1 + m1 ⊗ 1 ⊗ 1). It implies in particular that m2

becomes associative in cohomology. Here m3 is a kind of generalized chain homotopy
between the zero map and the associator of m2.

If C is an A∞-category, then we obtain a new “category” HC by declaring that
Ob(HC) = Ob(C) and that HomHC(X,Y ) = H∗HomC(X,Y ). This is almost a cate-
gory, except that it need not have identity morphisms. If it does, then C is called
cohomologically unital. We will assume this throughout this work.

We view HC as a category enriched over graded k-vector spaces. We define H0C
similarly (enriched over ungraded k-vector spaces).

We now consider some examples. By definition, an A∞-algebra is a A∞-category with
only one object. A dg-category is an A∞-category where mn = 0 for n > 2. A dg-algebra
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is defined in the obvious way. Any graded associative algebra is an example of a dg-
algebra, with m1 = 0. Similarly a category enriched over graded k-vector spaces is an
example of a dg-category, with m1 = 0. An A∞-category with m1 = 0 is called minimal.

Suppose that B is an abelian category enriched over k-vector spaces. We can form
a dg-category C as follows: we declare Ob(C) to consist of the chain complexes in B,
and for M•, N• chain complexes, we let HomC(M,N)n =

∏
q−p=n HomB(Mp, N q). This

carries a natural differential m1(f) = dN ◦ f − (−1)|f |f ◦ dM . We denote the resulting
complex by Hom•(M,N). The composition in B supplies a multiplication m2 for C, and
one may check that this indeed yields a dg-category. A particular example of this is
when B is the category of k-vector spaces. In this case, we denote the dg-category C by
Ch. A variant of this is its opposite Chop, where HomChop(M,N) = HomCh(N,M) and
mop

2 (f, g) = (−1)|f ||g|m2(g, f).

Definition. Let A and B be A∞-categories. By an A∞-functor F : A → B we mean
a map F : Ob(A) → Ob(B), and for each set X1, . . . , Xn ∈ Ob(A) a linear map Fd :
Hom(Xd−1, Xd)⊗ . . .⊗Hom(X0, X1)→ Hom(FX0, FXd)(1− d)

We require that∑
r,a1+···+ar=d

(−1)εmBr (Fa1 ⊗ . . .⊗ Far) =
∑

a+b+c=d

(−1)a+bcFa+1+c(1
⊗a ⊗mAb ⊗ 1⊗c),

where ε = (r − 1)(a1 − 1) + (r − 2)(a2 − 1) + · · ·+ (2)(ar−2 − 1) + (1)(ar−1 − 1).

While the notation md is highly ambiguous, it should almost never lead to confusion.
Again the required relation looks rather strange. Writing it out for small n as before,
one finds that F1 is a chain map, and that F2 respects multiplication up to homotopy.
In particular, F descends to an ordinary functor HF : HA → HB, provided it preserves
the identities. We will assume this throughout.

An A∞-functor F is called a quasi-isomorphism if HF is an isomorphism. It is called
a quasi-equivalence if HF is an equivalence.

There is a natural way of composing A∞-functors, but we will not need this explicitly.
There is in fact a notion of homotopy and natural transformation of A∞-functors, turning
the class of A∞-functors from A to B into an A∞-category of its own. This is very useful,
but the definition is complicated, so we will avoid it.

2.2. Homological perturbation theory

This is perhaps the first non-trivial result about A∞-categories. For a reference, see [20,
(1i)]. The setup is as follows: let B be a A∞-category and denote by A an “A∞-category
to be”. By this we mean that Ob(A) = Ob(B), and for each X,Y ∈ A we are given a
graded vector space HomA(X,Y ).

Theorem 2.1 (Homological perturbation lemma). Let k be any ring, not necessarily a
field.

In the above situation, suppose we are also given (for each X,Y ∈ A) a graded differ-
ential mA1 on HomA(X,Y ) of degree +1, a linear endomorphism T1 of HomB(X,Y ) of
degree −1, F1 : HomA(X,Y )→ HomB(X,Y ) and G1 : HomB(X,Y )→ HomA(X,Y ).
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If (for all X,Y ) mB1 T1 + T1m
B
1 = F1G1 − 1, then it is possible to produce an A∞-

structure (md) on A extending the m1 given, and to extend F1, G1 to A∞-functors.
Moreover, FG is a quasi-isomorphism.

A few remarks are in order. It is suggestive to view, T1 as the first term of an
“A∞-homotopy”. A stronger version of this theorem in fact extends this to a homotopy
between FG and 1. Secondly, it should be mentioned that the above process is completely
functorial: there exist explicit formulas for all the maps this theorem constructs (and
they involve no division, hence why this works over any ground ring). See the reference
for details.

To illustrate the power of this theorem, let’s record two corollaries:

Corollary. Let A be an A∞-category over a field. There exists an A∞-category Ã with
Ob(Ã) = Ob(A) and a quasi-isomorphism F : Ã → A with H(F ) = 1. Moreover, Ã is
unique up to (non-unique) isomorphism.

Proof. Since we are working over a field, we may split HomA(X,Y ) = HomHA(X,Y )⊕
C(X,Y ). This yields a homotopy to feed into the above theorem.

Corollary. Let L : A → B be an A∞-functor between A∞-categories. If L is a quasi-
equivalence, then there exists M : B → A such that H(ML) ' 1H(A), H(LM) ' 1H(B).
(Here by ' we mean isomorphism of functors, i.e. invertible natural transformations.)
That is to say, L admits a quasi-inverse.

This is an easy application of the homological perturbation lemma and the following
classification of certain automorphisms of A∞-categories.

Suppose A is an A∞-category, and we denote by F the following data: for each
X0, . . . , Xn ∈ A, a linear map Fn : HomA(Xn−1, Xn)⊗. . .⊗HomA(X0, X1)→ HomA(X0, Xn).
We call F a formal diffeomorphism if F1 is an isomorphism for all X0 ∈ A.

The following proposition is a relatively easy, explicit calculation.

Proposition 2.2. Suppose A is an A∞-category and F a formal diffeomorphism.
Then there exists a unique alternative A∞-structure F∗A such that F becomes an

A∞-functor F : A → F∗A. Moreover, F is automatically an isomorphism.

2.3. Quasi-representation and triangles

By an A∞-module on an A∞-category A, we mean an A∞-functor M : A → Chop. As we
have mentioned before, using the notion of homotopy of A∞-functors, one may turn the
set of all A∞-modules on A into an A∞-category Mod(A). Given X ∈ A, there exists
an A∞-module ιX given by ιX(Y ) = HomA(Y,X). In fact, there exists an A∞-functor
ι : A →Mod(A), which is an embedding of A∞-categories (for an appropriate definition
of embedding).

This notion allows us to transfer constructions in the category of chain complexes to
arbitrary A∞-categories. Namely, given an A∞-module M on A, we say an object Y ∈ A
quasi-represents M if ιY ' M in H0Mod(A). Since we have not actually defined what
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this means, here is a more concrete definition. Fix Y ∈ A. Note that for every X ∈ A,
we have a composition map m2 : M(Y )⊗ ιY (X)→M(X). Thus, for a fixed c ∈M(Y ),
we get a composition map m2(c, •) : ιY (X)→M(X).

Definition. In the above situation, suppose [c] ∈ H0M(Y ). Then we say (Y, [c]) quasi-
represents M if for each X, m2(c, •) is a quasi-isomorphism – that is to say if m2(c, •)
induces an isomorphism H(ιY (X)) → HM(X). (This condition is independent of the
choice of cocycle c representing [c].)

If M,N are A-modules, then we can define the A-module M ⊕N via (M ⊕N)(X) =
M(X) ⊕ N(X) and the direct sum of the structure maps of M and N. Similarly, if
V is a graded vector space (viewed as a complex with zero differentials) and M is an
A-module, we define (V ⊗M)(X) = V ⊗M(X), with structure maps just ignoring V,
i.e. md(z ⊗ fd, fd−1, . . . , f1) = z ⊗md(fd, . . . , f1).

For X, Y in A and V a graded vector space (again viewed as a complex with zero
differentials), any object quasi-representing ιX ⊕ ιY will be denote X ⊕ Y and called
sum of X and Y. Any object quasi-representing V ⊗ιX will be denoted V ⊗X and called
tensor product of V and X. If V = k[1] is one-dimensional concentrated in degree -1, we
denote V ⊗X by SX or even X[1], and call it the shift of X.

From the above remarks it is clear that the above constructions, if they exist, are
unique up to quasi-isomorphism.

Notice that some properties of these constructions in Ch carry over to arbitrary A∞-
categories. For example (k ⊕ k)⊗X ' X ⊕X, and so on.

Other properties are less obvious. For example, functorial constructions in Ch in this
way actually yield functors on A, provided they can always be carried out. So if, for
example, SX exists for all X ∈ A, then there exists a functor S : A → A, unique up to
unique natural transformation in H0(A). See [20, p. 34] for more details.

Triangulated A∞-categories

Consider the A∞-category D with three objects Z0, Z1 and Z2, such that HomD(Zi, Zi)
is one-dimensional spanned by eZi . The space of morphisms from Z0 to Z1 is one-
dimensional spanned by z1 in degree 0, and similarly from Z1 to Z2. The space of
morphisms from Z2 to Z0 is spanned by z3 in degree one. We posit that all md are zero,
except for m2 with identities and m3 involving z3, z2 and z1 in cyclic order, which yields
identities in the appropriate space.

Definition. Let A be an A∞-category. By a triangle in H(A) we mean three objects
X0, X1, X2 together with morphisms [x1] ∈ Hom0

H(A)(X0, X1), [x2] ∈ Hom0
H(A)(X1, X2)

and [x3] ∈ Hom1
H(A)(X2, X0).

We say that a triangle is exact if there exist an A∞-functor F : D → A such that
F (Zi) = Xi and [F (zi)] = [xi], where by the last statement we mean equality in H(A).

We call A triangulated if (1) every morphism can be completed to an exact triangle,
and (2) the shift functor is essentially surjective on H0(A).

10



We denote an exact triangle formed by objects X0, X1 and X2 as

X0 → X1 → X2 → .

This is a slightly obscure-looking definition. One may prove that if X0 → X1 → X2 →
is an exact triangle, then ι(X1 → X2 → X0[1]) is quasi-isomorphic to a natural cone
construction in Chopp on ιX0 → ιX1. We have no space here to say more, and just
summarize the properties of triangulated A∞-categories we need. The main point is
really (1), then (2 - 3) follow easily, and (4) follows directly from the definitions.

Proposition 2.3. Let A be a triangulated A∞-category, and let Y0
y1−→ Y1

y2−→ Y2
y3−→ be

an exact triangle.

1. H0(A) is a triangulated category, with shift functor induced from S and distin-
guished triangles given by exact triangles of A.

2. The triangle Y1 → Y2 → SY0 → with edge morphisms [y2], [y3] and [−Sy1] is exact.

3. Given exact triangles Y0
[a1]−−→ Y1 → Z0 →, Y1

[a2]−−→ Y2 → Z2 → and Y0
[a2a1]−−−→ Y2 →

Z1 →, then there is also an exact triangle Z0 → Z1 → Z2 → .

4. If F : A → B is an A∞-functor, then images of exact triangles are exact.

Split-closure

Definition. Let A be an A∞-category. We say A is split-closed if, given X ∈ A and
e ∈ HomH0A(X,X) such that e2 = e, then X is quasi-isomorphic to Y ⊕Z (for some Y
and Z) such that e is the class of the canonical map X → Y.

Suppose B ⊂ A is a full subcategory. We call the triangulated closure of B inside A
the intersection B̃ of all triangulated full subcategories, closed under quasi-isomorphism,
of A, and say B generates B̃.

If B is an A∞-category, A a triangulated A∞-category, and F : B → A is an A∞-
functor such that HF is fully faithful, we say that A is a triangulated envelope of B if
F (B) generates A.

We similarly define the split-triangulated closure, split-closed generation and split-
closed triangulated envelopes.

So for example the triangulated closure of B (inside A) is obtained by adding a zero
object, forming cones on all morphisms, including all quasi-isomorphic objects, and
then repeating this process infinitely many times. The main point we are getting at
is the following theorem. Although stated abstractly, it is usually proved by explicit
constructions.

Theorem 2.4. Both triangulated envelopes and split-closed triangulated envelopes exist
and are unique up to quasi-equivalence.

The theorem stated in the introduction follows directly from this (but is much weaker).
Given an A∞-category A, we denote by DA any triangulated envelope, and by DπA
any split-closed triangulated envelope.
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2.4. Twisting

Let A be an A∞-category which is closed under arbitrary shifts and finite direct sums.
Let Y0, Y1 ∈ A be such that HomH(A)(Y0, Y1) is finite-dimensional. We can then form
the tensor product HomH(A)(Y0, Y1) ⊗ Y0. This comes with a natural evaluation homo-

morphism [f ] to Y1, of degree zero. If HomH(A)(Y0, Y1)⊗ Y0
[f ]−→ Y1 can be completed to

an exact triangle, we denote the third term by TY0(Y1), and call it the twist of Y1 along
Y0.

We say that A is cohomologically finite if HomHA(X,Y ) is finite-dimensional for all
X,Y ∈ A.

Proposition 2.5 ([20], lemma 5.4). Let A and B be triangulated, cohomologically finite
A∞-categories. Then:

1. For any Y ∈ A, there exists a functor TY : A → A extending the above construc-
tion. It is canonical in H(A).

2. If F : A → B has the property that HF is fully faithful, then the functors TBFX(F•)
and FTAX (•) are canonically quasi-isomorphic.

Application one: the total endomorphism ring

Our main application of twisting is as follows: suppose A, B and F are as in the theorem.
Consider objects X and Y of A. We can form the graded vector space R(X,Y ) =⊕

n≥0 HomH0(A)(X,T
n
Y (X)). This can be given the structure of a (non-commutative)

ring: given f ∈ HomH0(A)(X,T
n
Y (X)) and g ∈ HomH0(A)(X,T

m
Y (X)), we can form the

composite TmY (f) ◦ g ∈ HomH0(A)(X,T
m+n
Y (X)).

The canonicity of the isomorphism in the above theorem then immediately implies the
following:

Proposition 2.6. In the above situation, R(X,Y ) and R(FX,FY ) are isomorphic as
graded rings. In particular R(X,Y ) is invariant under auto-quasi-equivalences of A
fixing X and Y.

Application two: generation criteria

One interesting point regarding twists is that when composing several of them, they
still compute (increasingly complicated) cones. This follows from parts (2) and (3) of
proposition 2.3 summarizing the properties of exact triangles.

Lemma. Let A be a triangulated A∞-categories and X,Y1, . . . , Yn ∈ A. Let Ã denote
the triangulated subcategory of A generated by Y1, . . . , Yn.

Then there exists an object Z ∈ Ã and an exact triangle X → TYn . . . TY1(X)→ Z → .

Theorem 2.7. Let A be a split-closed triangulated A∞-category and X,Y1, . . . , Yn ∈ A.
Let X ′ = TYn . . . TY1(X), and Ã the split-closed triangulated subcategory of A generated
by Y1, . . . , Yn.

If HomH0(A)(X,X
′) = 0, then X lies in Ã.
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Proof. By the lemma, there is an exact triangle X → X ′ → Z → with Z ∈ Ã. By
assumption, X → X ′ is the zero morphism, so Z ' X ′ ⊕X[1]. Hence X[1] ∈ Ã, and so
the same holds for X.

3. The enhanced derived category

We now construct our first interesting A∞-category, the derived category of coherent
sheaves on a scheme. For a basic reference on abelian categories and homological algebra,
see [23]. For a general reference for scheme theory, see [8].

Suppose B is an abelian category with enough injectives, and A is a full subcategory.
Then for every bounded complex A• in A, there exists a quasi-isomorphic left-bounded
complex of injectives I•A in B (for example a Cartan-Eilenberg resolution, see [23, section
5.7]). By standard arguments, any two such complexes are quasi-isomorphic, uniquely
up to homotopy.

Suppose such a choice IA has been made for every bounded complex A. Then we denote
the enhanced derived category ofA (relative to B) byD∞(A,B).We defineOb(D∞(A,B))
to consist of the bounded complexes in A, and HomD∞(A,B(A•, B•) = Hom•(IA, IB).
This is a dg-category in a natural way.

Proposition 3.1. The dg-category D∞(A,B) is independent of the choices of resolving
complexes IA, up to quasi-isomorphism.

Moreover
H∗HomD∞(A,B)(A,B) ' Ext∗(A,B).

Proof. Let I ′A be another set of resolutions. By general results about injective objects,
the identity morphism on A lifts to inverse quasi-isomorphisms αA : IA → I ′A and
βA : I ′A → IA. One checks that the morphisms fA = (α∗A, βB∗) : Hom•(IA, IB) →
Hom•(I ′A, I

′
B) define the F1 term of a dg-functor between the two categories (which is

the identity on objects). The F2 term consists of homotopies between βAαA and 1.
It hence suffices to show that the fA are quasi-isomorphisms. To see this, one can use

the weakly convergent spectral sequence Ep,q1 = Hp HomA(C−•, IqB)⇒ Hp+q Hom•(C, IB).
A quasi-isomorphism C → C ′ induces an isomorphism on the E1 page, and hence an
isomorphism in cohomology. Applying this to A→ IA, we see that H∗Hom•(IA, IB) '
Ext∗(A,B). Hence fA is a quasi-isomorphism.

Definition. Let X be an algebraic variety (scheme of finite type over a field). Then the
enhanced derived category of X, denoted D∞(X), is the dg-category D∞(Coh(X), QCoh(X)),
well-defined up to quasi-isomorphism.

Here Coh(X) denotes the category of coherent sheaves, and QCoh(X) the category
of quasi-coherent sheaves.

One may show that D∞(X) is in fact split-closed and triangulated. The triangulation
is essentially obvious, and split-closedness is proved for example in [19, section (5c)]. We
do not really need these results, but it means that we do not have to write (or consider)
DπD∞(X).
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One may actually show that H0D∞(X) is the category obtained from Db(Coh(X))
by inverting quasi-isomorphisms (this does not hold for all pairs (A,B) as above), but
we do not actually need this. We now prove two generation results for the enhanced
derived category.

Theorem 3.2 ([19], lemma 5.4). Suppose X is a smooth projective variety with a very
ample line bundle O(1). Then D∞(X) is generated (as a triangulated A∞-category) by
the locally free sheaves. Moreover D∞(X) is split-generated by the line bundles OX(n)
for n ∈ Z.

Proof. It is clear that D∞(X) is generated by Coh(X). We show first that every coherent
sheaf has a free resolution. By the classification of quasi-coherent sheaves on a projective
scheme, every coherent sheaf F admits a surjection O(−n)m → F for sufficiently large
n and m. Fix F ∈ Coh(X). We can form a resolution

0→ R→ O(−nl)ml → · · · → O(−n1)m1 → F → 0. (2)

Recall now the sheaf Ext functor (see [8, III.6]). By a standard (dimension shifting) ar-
gument, Exti(R,G) = Exti+l(F ,G). We claim this is zero for any G ∈ QCoh(X) and i >
dimX. Indeed, it suffices to prove this stalkwise, and Exti(F ,G)x = ExtiOX,x(Fx,Gx) = 0
for i > dimX ≥ cdOX,x, by Serre’s theorem on the cohomological dimension of regular
local rings. It follows that, if l > dimX, then Rx is a free module for any x ∈ X (since
finitely generated projective modules on a Noetherian local ring are free), and hence R
is a locally free sheaf (because X is Noetherian). This establishes the first claim.

For the second claim, we observe that the exact sequence (2) yields an exact tri-
angle R[l − 1] → L• → F → in D∞(X), where L• denotes the complex built from
O(n)-s. By rotation, we get an exact triangle F → R[l] → L•[1] → . However,
HomH0D∞(X)(F ,R[l]) = Extl(F ,R) by the proposition. We claim this is also zero
for l sufficiently large. If so, then L•[1] is quasi-isomorphic a cone on a zero morphism
F → R[l], which is just the direct sum F ⊕R[l], proving the theorem.

To establish the claim, using the Ext-to-Ext spectral sequence, one sees that if Exti(F ,G) =
0 for i > n, then Exti(F ,G) = 0 for i > n + dimX (because Hp(X,G) = 0 for
p > dimX and any quasi-coherent sheaf G). But this was already shown above (with
n = dimX).

Theorem 3.3. Let X be an algebraic curve (smooth projective variety of dimension one)
over an algebraically closed field, and P ∈ X a closed point.

Then D∞(X) is split-generated by OX and OX(P ).

Proof. By the Riemann-Roch theorem and the embedding criteria ([8, remark II.7.8.2]),
O(P ) is ample. It hence suffices to show that the category C split-generated by O
and O(P ) contains O(nP ) for n ∈ Z. But we have an exact sequence 0 → O(nP ) →
O((n + 1)P ) → O/P → 0. The case n = 0 shows that O/P ∈ C. Then induction on n
shows that O(nP ) ∈ C for any n.
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4. The Fukaya category

In this section we sketch how to construct the Fukaya category. This is very difficult
in general, and we will not be able to give all details. We will focus on material which
generalizes to higher dimensions, and restrict to the bare minimum of details applying
only to the torus. For more complete accounts, see [19, sections 8 and 9] and [20].

The first two subsections review some basic notions from symplectic geometry. For a
general overview, see for example [4].

4.1. Symplectic linear spaces

We recall that a symplectic vector space V is a finite-dimensional real vector space to-
gether with a non-degenerate alternating bilinear form ω. A compatible complex structure
is an automorphism I : V → V such that I2 = −1 and g(v, w) = ω(v, Iw) is a positive-
definite (bilinear symmetric) form. A compatible Riemannian inner product is defined
similarly. A triple (ω, I, g) obtained in this way is called compatible, and it is easy to see
that compatible triples always exist. If (ω, I, g) is a compatible triple, then h = g + Iω
defines a Hermitian inner product on V considered as a complex vector space.

It is well-known that a symplectic vector space must have even dimension 2n. A
subspace L ⊂ V is called Lagrangian if dimL = n and ω|L = 0, i.e. ω(v, w) = 0 for
all v, w ∈ L. Recall that there exists a topological space Gr(m,V ) of m-dimensional
subspaces of V. We denote by LGr(V ) ⊂ Gr(n, V ) the Lagrangian Grassmannian of all
Lagrangian subspaces of V.

Choosing a compatible triple (ω, I, g), we obtain a Hermitian inner product on V. It
is then easy to see that every Lagrangian subspace is obtained as the real span of a
hermitian basis of V (as a complex vector space). Hence

LGr(V ) ' U(n)/O(n).

It follows that LGr(V ) is connected (because U(n) is), with fundamental group Z (con-
sider the evident fibration).

Pick a compatible triple (ω, I, g) and write h for the associated Hermitian metric. Let
ΛnCV denote the top exterior power of V as a complex vector space. This is a complex
line, and it carries a hermitian metric. For a Lagrangian subspace L = 〈e1, . . . , en〉,
where the ei form a Hermitian basis of V, we write

s(L) =
(e1 ∧ · · · ∧ en)⊗2

|e1 ∧ · · · ∧ en|2
.

This is a well-defined map LGr(V )→ S(ΛnCV
⊗2), where the right hand side denotes the

unit circle of a complex line. It hence carries a natural orientation, and so a generator of
H1. Pulling back this generator by s we obtain an element sV ∈ H1(LGr(V ),Z) called
the Maslov class. One may show that this is in fact a generator of H1(LGr(V ),Z) and
only depends on ω, not I and g. Thus if γ is a loop in LGr(V ), we can write [γ] = nsV ,
and thus obtain an integer n.

The so-called Maslov index is a grand generalisation of this observation.
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Theorem 4.1. Fix two Lagrangian subspaces L1 and L2 of V, and denote by P (V,L1, L2)
the space of paths γ : [0, 1] → LGr(V ) with γ(0) = L1, γ(1) = L2. It carries a natural
equivalence relation γ1 ∼ γ2 given by homotopy relative to {0, 1}.

It is possible to define a set of functions µ : P (V,L1, L2) → Z with the following
properties: (1) µ factors through ∼, (2) µ reduces to the Maslov index for loops defined
above if L1 = L2, and (3) µ depends only on the symplectic structure of V, not on any
other choices.

Suppose now that dimV = 2. Pick an orientation-preserving homeomorphism S(ΛnCV )⊗2 '
S1. Then if γ : [0, 1]→ LGr(V ) is a loop, we have

µ(γ) = [f(1)],

where f denotes the unique lift of sγ to R with f(0) = 0, relative to the covering R →
S1, x 7→ e2πix, and [x] is the greatest integer less than or equal to x.

The properties described in the theorem do not determine µ and are meant only
for illustration. The first part of this is proved in [2], where the Maslov index is also
characterized axiomatically, and constructed in various ways.

The second part of the theorem is an easy exercise, once the Maslov index has been
defined.

4.2. Some symplectic geometry

We recall that a symplectic manifold is a smooth real manifold M, together with a closed,
non-degenerate two-form ω = ωM . Then for each point x ∈ M, the tangent space TxM
to M at x is naturally a symplectic vector space. A symplectomorphism of symplectic
manifolds (M,ω) and (N, η) is a smooth map f : M → N such that f∗η = ω. The group
of symplectic automorphisms of M is denoted by Sym(M) = Sym(M,ω).

As before, a symplectic manifold necessarily has even dimension 2n. A submanifold
L ⊂ M of dimension n is called Lagrangian if ω|L = 0. Equivalently, for all x ∈ L,
TxL ⊂ TxM is a Lagrangian subspace. If φ : M → M is a symplectic automorphism,
then φ(L) is also a Lagrangian submanifold.

Suppose now that Xt is a (time-dependent) vector field on M, and that M is compact.
Recall that then there exists a unique flow φt : M →M such that ∂φ/∂t = Xt. We say
that Xt is a symplectic vector field if φt is a symplectomorphism. This happens if and
only if the one-form ηXt(v) := ω(Xt, v) is closed (this follows from Cartan’s formula).
In this case, we call the family φt a symplectic isotopy (from φ0 = 1 to φ1). If ηX is
not only closed but also exact, say ηXt = dHt, then we call φt a Hamiltonian isotopy
corresponding to the Hamiltonian function H. Notice that non-degeneracy of ω implies
that for each one-form η there exists precisely one vector field X such that ηX = η. Hence
for each (time-dependent) Hamiltonian function M × [0, 1] → R, we get a Hamiltonian
isotopy.
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4.2.1. Dehn twists

We now describe how to produce particular symplectomorphisms on symplectic surfaces,
called Dehn twists. We begin with the local model, namely the symplectic cylinder
Xε := S1 × (−ε, ε). We use coordinates s and t on S1 and (−ε, ε) respectively (we
put z = e2πis ∈ S1). The symplectic form is ω = ds ∧ dt. Pick a smooth function
fε : (−ε, ε)→ R such that

f ′(t) = 0 for t < −ε/2
f ′(t) = 1 for t > ε/2

f ′′(t) = f ′′(−t).

Then we define a Hamiltonian function Hε(s, t) = −f(t). Its time-one flow τS1 is called
a local Dehn twist. It is given by

τS1(s, t) =

{
(s, t) : |t| ≥ ε/2
(s− f(t), t) : |t| < ε/2

.

Suppose now that S is a symplectic surface, and L is a Lagrangian circle (i.e. any
embedded circle). By the Weinstein neighbourhood theorem [4, theorem 2.10], there
exist ε > 0, an open neighbourhood U of L in S and a symplectic isomorphism U ' Xε.
Via this isomorphism, we can transplant τS1 to a symplectomorphism τL on U. Since τS1

is the identity near the boundary of Xε, τL extends to all of S.
A very important observation is that even though we had to make a lot of choices

in constructing τL (in particular U and fε), any other set of choices would yield a
Hamiltonian isotopic symplectomorphism. Thus we will in the future speak of “the”
Dehn twist in L.

Note in particular that τL does not depend on an orientation of L. Namely, ω induces
an orientation of S, and this alone determines “which direction to twist in”, as illustrated
in figure 1, depicting a Dehn twist of the torus. The twisting direction may seem slightly
unnatural, but is dictated by certain less-elementary ways of constructing Dehn twists
(using Lefschetz fibrations).

4.3. Graded symplectic geometry

We next describe an extension of the above ideas to incorporate “gradings”. All of this
material can be found in [18].

First recall that on any manifold M, there exists a natural fibre bundle π : Gr(n,M)→
M with fibres Gr(n, TxM). If M is a symplectic manifold of dimension 2n, we can form
the subbundle LGr(M) ⊂ Gr(n,M) of Lagrangian subspaces, called the Lagrangian
Grassmannian of M. For any Lagrangian L ⊂ M, there exists a natural section sL :
L→ LGr(M) (given by sL(x) = TxL). If φ : M →M is a symplectomorphism, then we
have a map φ∗ : LGr(M) → LGr(M) covering φ, given by φ∗(x, Lx) = (φ(x), DφLx).
For any Lagrangian L, it satisfies φ∗sL = sφ(L)φ|L.
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L

c

Figure 1: Effect of a Dehn twist τL on a test curve c.

Recall that, for a reasonably nice space X and abelian group A, the A-covers of X
(i.e. covering spaces with a continuous and fibrewise transitive and faithful action of A)
are classified by H1(X,A).

Definition. Suppose (M,ω) is a symplectic manifold. We call a Maslov cover for M
a Z-cover L of LGr(M) with the following property: if c ∈ H1(LGr(M),Z) classifies
L, x ∈ M and ix : LGr(TxM) → LGr(M) denotes the inclusion of the fibre, then
i∗x(c) = sTxM .

Recall that sTxM denotes the Maslov class of LGr(TxM), which is a canonical gener-
ator of H1(LGr(TxM),Z). Since π1(LGr(TxM)) = Z, it follows in particular that L is
a fibre bundle on M with fibres the universal covers of LGr(TxM). One may prove that
Maslov covers exist if and only if 2c1(M) = 0 (where c1(M) denotes the first Chern class
of the tangent bundle). In fact, choose a compatible almost-complex structure on M,
and write ∆M = ∆(M,ω, I) := Λn(TM,C)⊗2. Then Maslov covers of M are in bijection
with homotopy classes of trivialisations of ∆M (and in particular form an affine space
over H1(M,Z)), see [18, lemma 2.2] and the discussion preceding it.

The main reason for grading Lagrangians is as follows: suppose (L1, t1) and (L2, t2)
are graded Lagrangians and x ∈ L1 ∩ L2. Choose a path γ in Lx from t1(x) to t2(x).
Since Lx is the universal cover of LGr(TxM), this path is unique up to homotopy. Hence
µx(L1, L2) := µ(πγ) (where the right hand side denotes the Maslov index for paths from
theorem 4.1) is well-defined, and called the Maslov index of x.

We call a graded manifold a symplectic manifold (M,ω) together with a choice of
Maslov cover L. By a graded Lagrangian we mean a Lagrangian submanifold L together
with a lift tL : L → L of sL. By a graded symplectomorphism φ : (M,ωM ,LM ) →
(N,ωN ,LN ) we mean a symplectomorphism φ : M → N, together with a Z-equivariant
lift φ∗ : LM → LN of φ∗ : LGr(M)→ LGr(N).

Graded symlectomorphisms can be composed in the natural way, and we write Symgr(M)
for the group of graded symplectomorphisms of M. There is a central subgroup {1[n]|n ∈
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Z} ' Z, where 1[n] is given by φ = 1 and φ∗(x) = x+n (using the Z-action on the cover).
For any graded automorphism φ, we write φ[n] := 1[n]φ = φ1[n]. Note that Symgr(M)
acts naturally on the set of graded Lagrangians. If L is such a graded Lagrangian, then
we denote by L[n] the graded Lagrangian 1[n](L). Furthermore, if φ1 and φ2 are joined
by a symplectic isotopy, then a grading of φ1 induces a grading of φ2.

One may describe cohomologically which symplectomorphism and Lagrangians are
gradable, and how many possible gradings there are, see [18, lemmas 2.3 and 2.4]. We
will not need this.

4.3.1. A more explicit description

Let (M,ω) be a symplectic manifold, and choose a compatible almost-complex structure.
Suppose we are given a non-vanishing section Ω of ∆M , with |Ω| ≡ 1 (i.e. a trivialisation
of ∆). Put LΩ = LGr(M) ×s,∆,c R = {(L, r)|s(L) = c(r)}. Here R denotes the trivial
bundle, c : R → S(∆) the natural cover induced by Ω and s : LGr(M) → ∆ is the
natural map. This is a Maslov cover, and one may show that in fact all Maslov covers
are obtained in this way.

Suppose now L is a Lagrangian submanifold of M, and tL : L → LΩ is a grading.
Then we can write tL(x) = (s(sL(x)), s̃L(x)) for some function s̃L : L → R. One has
e2πis̃L(x)Ω(x) = s(sL(x)), and such (continuous) functions are in bijection with gradings
of L.

Similarly, if φ : M → M is a symplectic automorphism, then giving a grading for φ
is the same as giving a continuous function s̃φ : LGr(M) → R such that s(Dφ(L)) =
e2πis̃φ(L)Ω(x), for any x ∈M and L ∈ LGr(M)x.

Suppose now that (φ, s̃φ) and (ψ, s̃ψ) are graded symplectomorphisms, and that (L, s̃L)
is a graded Lagrangian. Then one easily verifies that

s̃ψφ = s̃φ + s̃ψ ◦Dφ
s̃φ(L) = s̃L ◦ φ−1 + s̃φ ◦ sL ◦ φ−1.

4.3.2. Example: the flat torus

We consider now the torus T = C/Z2. This carries a natural (constant) symplectic form
and holomorphic structure. We obtain a trivialisation Ω = ∂/∂z⊗2 of ∆T . Up to homo-
topy, all others are of the form Ωm,n(x, y) = e2πi(mx+ny)Ω. We thus get corresponding
Maslov covers Lm,n for m,n ∈ Z, and by the above discussion this yields all of them.
It is now easy to check that, with respect to the cover L = L0,0 corresponding to the
holomorphic trivialisation Ω, a Lagrangian circle is gradable if and only if it is not con-
tractible. In contrast, if (m,n) 6= (0, 0), then contractible circles are still not gradable,
but there always exist further (non-contractible) circles which are not gradable either.

Hence the holomorphic trivialisation is a natural choice of Maslov cover. Moreover,
for this choice of Maslov cover, any symplectic automorphism of T is gradable. (All of
these statements are easy exercises.)
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4.4. The Fukaya category of symplectic surfaces

We now describe the Fukaya category a compact symplectic surface with choice of Maslov
cover (i.e. the torus, with some choice of symplectic form and Maslov cover). A closely
related situation is described in [1], and also in our main reference [19].

Suppose L1, L2, . . . , Ln are graded Lagrangian circles in T (i.e. compact connected
Lagrangian subspaces with choices of grading) which are pairwise transverse. Then for
i 6= j, the set Li ∩Lj is finite. Denote by Λt the field of formal power series

∑
n>0 ant

bn

in t, with complex coefficients an ∈ C and real exponents bn ∈ R tending to infinity as
n→∞. We then form the Floer chain space

CF ∗(Li, Lj) =
⊕

x∈Li∩Lj

[x]Λt,

where [x] is a formal generator in degree µx(Li, Lj).
We will describe how to define an operation mn : CF ∗(Ln, Ln−1)⊗. . .⊗CF ∗(L1, L2)→

CF ∗(L1, Ln) in such a way that the A∞-relations are satisfied whenever they make sense.
Specifically, we will put

mn(pn−1, . . . , p1) =
∑

q∈L1∩Ln

C(q; p1, . . . , pn−1)[q].

Here pi ∈ Li ∩Li+1. We now explain how to compute the coefficients C(q; p1, . . . , pn−1).
Let Dn denote the unit disc, with marked points P1, P2, . . . , Pn−1 and Q on the bound-

ary (in that order). We denote the boundary segment ending at Pi by γi. We write
M(q; p1, . . . , pn−1) for the set of equivalence classes of immersed polygons u : Dn → X
with the following properties: (1) u is orientation-preserving and an embedding away
from Pi or Q, (2) u has convex corners at Pi and Q, (3) u(Pi) = pi and u(Q) = q,
and (4) u(γi) ⊂ Li. Two embedded polygons are viewed as equivalent if they differ by a
diffeomorphism of Dn.

We then put C(q; p1, . . . , pn−1) =
∑

u∈M(q;p1,...,pn−1)±t
∫
Dn

u∗ω. Here ± denotes a sign

which we are not going to explain1

Unfortunately we have no space here to explain why this yields maps satisfying the
A∞-relations. The following theorem summarizes the properties of the Fukaya category
we are going to use.

Theorem 4.2. Let (T, ω,L) be a graded manifold, where T is the torus. The Fukaya
category Fuk(T ) has as objects the graded Lagrangians (L, tL). Moreover:

1. If L1, L2 ∈ Fuk(T ) are transverse, then HomFuk(T )(L1, L2) = CF ∗(L1, L2). If

L1, . . . , Ln are transverse, then m
Fuk(T )
n : Hom(Ln−1, Ln) ⊗ . . . ⊗ Hom(L1, L2) →

Hom(L1, Ln) is the map constructed above.

1We will not be needing the sign, only the fact that there exists a sign rule which makes the theorem
below true.
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2. There is an action of Symgr(T ) on Fuk(T ). On objects, it is the action constructed
previously. Moreover, if φ is a graded symplectomorphism which is Hamiltonian
isotopic to the identity, then its action on Fuk(T ) is quasi-isomorphic to the iden-
tity functor.

3. If L is a Lagrangian circle, τ̃L denotes the Symplectic Dehn twist in L with its
standard grading, and L′ ∈ Fuk(T ), then TL(L′) ' τ̃L(L′). Here TL denotes the
algebraic twist functor from section 2.4.

5. Hochschild cohomology and classification of A∞-structures

In this section we show how Hochschild cohomology can be used to classify minimal
A∞-structures. In the first subsection, we reinterpret A∞-algebras in terms of graded
coalgebras. This material is summarized most succinctly in [9, 3.6]. In the second
subsection we define Hochschild cohomology and explain some of its properties.

Much of the material can be found in [5] and also in [19, section 3].

5.1. A∞-structures and coalgebra codifferentials

We first reinterpret the A∞-equations in a somewhat less ad-hoc way. For this, recall
that a graded coalgebra is a graded vector space V, together with a comultiplication map
∆ : V → V ⊗V, satisfying a certain “associativity condition” dual to the definition of an
algebra. Similarly, a coderivation of degree d is an element of Hom(V, V (d)) satisfying
a certain relation dual to the definition of a derivation on an algebra. Finally, we recall
that the notion of a coalgebra morphism is also defined in the evident way. We remark
that both ∆ and coalgebra morphisms are automatically of degree zero.

Our main example of a coalgebra is as follows: let V be a graded vector space. Then
the reduced cotensor coalgebra on V is

TV =
⊕
n>0

V ⊗n.

We will write v1 . . . vn for v1 ⊗ . . . ⊗ vn, and grade TV by |v1 . . . vn| = |v1| + · · · + |vn|.
We write T

n
V = V ⊗n, seen as a subspace of TV. The comultiplication is defined by

∆(v1 . . . vn) =
n∑
k=1

(v1 . . . vk)⊗ (vk+1 . . . vn).

This coalgebra behaves in many ways “dually” the ordinary tensor algebra. Its properties
are summarized in the following proposition, the proof of which is an easy exercise.

Proposition 5.1. Let V and W be graded vector spaces. Write π : TV → V for
the projection onto the first summand. For any graded vector space U and linear map
f : U → TV, denote by π∗(f) the composite π ◦ f.
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1. The map

{coderivations TV → TV of degree d} π∗−→ Homk(TV, V (d)) =
∏
n>0

Homk(V
⊗n, V (d))

is a bijection, with inverse (bi) ∈
∏
n>0 Homk(V

⊗n, V (d)) 7→ b, where

b|TnV =
∑

a+b+c=n

1⊗a ⊗ bi ⊗ 1⊗b.

2. The map

{coalgebra morphisms TV → TW} π∗−→ Homk(TV,W ) =
∏
n>0

Homk(V
⊗n,W )

is a bijection, with inverse (fi) ∈
∏
n>0 Homk(V

⊗n,W ) 7→ f, where

f |TnV =
∑

r,a1+···+ar=n
fa1 ⊗ . . .⊗ far .

We will in the sequel also write π∗(f)i ∈ Hom(V ⊗i, V (d)) for the restriction of π∗(f)

to T
i
V.

The main reason for us to introduce these coalgebras is the relation to A∞-algebras.
Again, the following proposition is an easy exercise in writing out definitions. For a
graded vector space V, we denote by SV the graded vector space V (1) and by s : V → SV
the natural (degree -1) shift map.

Proposition 5.2. 1. Let A be a graded vector space. An A∞-structure on A is the
same as a degree one codifferential on TSA. Namely, given a codifferential (bi) ∈∏
n>0 Homk((SA)⊗n, SA(1)), the maps mi = s−1bis

⊗i ∈ Homk(A
⊗n, A(2 − i))

define an A∞-structure if and only if b2 = 0.

2. Let A and B be A∞-algebras, with associated coderivations bA and bB. Then A∞-
morphisms A → B are the same as coalgebra morphisms f : TSA → TSB such
that fbA = bBf.

For the remainder of this section, we fix a graded vector space A. Let us write
Cm,n = Homk((SA)⊗m, SA(n)) and Cn = Homk(TSA, SA(n)) '

∏
r C

r,n. The above
proposition allows us to view Cn as a space of coderivations on TSA. For b1 and b2
graded coderivations, we write [b1, b2] = b1b2− (−1)|b1||b2|b2b1 and call it the (super-)Lie
bracket. It is easy to check that it satisfies the graded Jacobi identity

(−1)|x||z|[x, [y, z]] + (−1)|y||x|[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0. (3)

One may also check that the Lie bracket is compatible with the gradings, in the sense
that [Cm,n, Cp,q] ⊂ Cm+p−1,n+q.
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5.2. Hochschild cohomology

Definition. Let A be a graded vector space. We write CCm,n = CCm,n(A) = Homk(A
⊗m, SA(n))

for the Hochschild chain spaces, and CCn =
∏
p+q=nCC

p,q.

Via s : A → SA, we have isomorphisms (as a graded vector spaces) CCm,n '
Cm,m+n−1 and CCn ' Cn. This allows us to transplant the super-Lie structure to CC•,•.

Suppose now that A is a graded algebra. Recall that this is just a special case of an A∞-
algebra, where mi = 0 for i 6= 2, and so proposition 5.2 yields a degree one codifferential
b ∈ CC2,0. We define, for x ∈ CCm,n, the Hochschild differential D(x) = [b, x]. We have
D(CCm,n) ' [b, Cm,m+n−1] ⊂ Cm+1,m+n ' CCm+1,n. The graded Jacobi identity (3)
implies that D is in fact a differential, and that it satisfies a graded Leinbniz rule.

Definition. The bigraded Hochschild cohomology of A is the cohomology HHm,n(A) of
CC•,n(A) with respect to D.

One important observation is that the Hochschild differential defined in this way
coincides precisely with the differential on the cohomological bar complex of A. This
implies the important formula (where by Aop we denote the opposite graded algebra of
A)

HHm,n(A) ' ExtmA⊗Aop(A,A(n)).

We are now interested in the following problem: we say that an A∞-structure (mi)
on A (equivalently, a codifferential (di)) extends the multiplication if m1 = 0 and m2

is the multiplication coming from A (equivalently, d1 = 0 and d2 = b). Recall from
section 2.2 on homological perturbation theory that a formal diffeomorphism is specified
by a family fi : A⊗i → A(1− i) with f1 invertible. We call it a gauge transformation if
f1 = 1. Notice that a formal diffeomorphism is the same as a coalgebra automorphism
Φ : TSA→ TSA (by proposition 5.2 part (2), and proposition 2.2). We can then define
a codifferential Φ∗(d) = Φ−1dΦ, which defines a new A∞-structure on A. If Φ comes
from a gauge transformation, we call these A∞-structures gauge-equivalent.

We would like to classify A∞-structures on A extending the multiplication, up to
gauge-equivalence. The following theorem is another exercise in writing out the defini-
tions.

Theorem 5.3. Let A be an associative graded algebra, and d, d′ be degree one codiffer-
entials extending the multiplication.

1. Let x ∈ Homk((SA)⊗r, SA). If Φ denotes the formal diffeomorphism specified by

π∗(Φ)n =


1 if n = 1

x if n = r

0 else,

then we have

Φ∗(d)n =

{
bk if n ≤ r
br+1 +D(x) if n = r + 1.
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2. Suppose that there exist integers r ≥ 2 and 0 ≤ s ≤ r − 2 such that

π∗(d)n = π∗(d
′)n for n ≤ r

π∗(d)2+n = 0 for 0 < n ≤ s.

Then π∗(d− d′)n ∈ CCn,2−n is a Hochschild cocycle for r < n ≤ r + s+ 1.

This is a fairly effective tool. Suppose, for example, that HHd,2−d(A) = 0 for
d > 2, d 6= R and dimkHH

R,2−R = 1. Then if (mi) is an A∞-structure extending the
multiplication, we can apply part (2) of the theorem, with d′ = b and r = 2, to conclude
that m3 defines a cocycle. If say R > 3, so that HH3,−1(A) = 0, we can apply part (1) of
the theorem to find a gauge-equivalent A∞-structure with m3 = 0. We can thus trivialize
all higher multiplications up to mR, at which point we find an obstruction class [mR] in
HHR,2−R(A). If [mR] = 0 we can keep trivialising, and thus show that the A∞-structure
is formal. Even if not, then if (m′i) is another A∞-structure, trivialised up to order R−1,
and if [mR] = [m′R] we can keep applying the theorem with d′ corresponding to (m′i) and
thus show that the two A∞-structures are in fact gauge-equivalent. So there is in fact
at most a one-dimensional family of A∞-structures (up to gauge equivalence) extending
the multiplication.

If we do not restrict our attention to only gauge-equivalences, but allow all A∞-
isomorphisms, then we can do even better. Indeed for ε̃ ∈ k×, the formal diffeomorphism
ε, with ε1 : A→ A, x 7→ ε̃|x|x and εn = 0 else, has the property that

ε∗(d)i = εi−2di.

Suppose now that k is algebraically closed. Then in the above situation, whereHH2(A)
is one-dimensional, there are at most two isomorphism classes of A∞-structures extend-
ing the multiplication: the formal one (where mi = 0 for all i > 2) and (provided it
exists) another structure where mi = 0 for i < r but [mr] 6= 0 ∈ HHr,2−r(A). Namely,
given any two non-formal A∞-structures trivialised up to order r− 1, we can find ε̃ such
that [ε∗(m)r] = [m′r], and then the argument from above shows that the A∞-structures
are isomorphic.

6. Mirror symmetry for elliptic curves over Λt

We are now ready to state and prove homological mirror symmetry for elliptic curves.
We will be working over the algebraically closed field Λt of characteristic zero. We let T
denote the flat torus with its standard symplectic structure and the Maslov cover coming
from the standard (holomorphic) trivialisation of ∆ (see section 4.3.2). In this section
we aim to prove the following theorem:

Theorem 6.1. There exists an elliptic curve E over Λt and a quasi-equivalence of A∞-
categories

DπFuk(T )→ D∞(E).
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We will use the method of proof sketched in the introduction. As said before, this
basically applies the strategy developed in [19] to the one-dimensional case. Namely,
we will show in subsection 6.3 that the two standard meridians A and B of T split-
generate Fuk(T ) (and hence a fortiori DπFuk(T )). We thus need to study the A∞-
algebra of relations Q = HomDπFuk(T )(A⊕B,A⊕B). We denote its cohomology algebra
by Q = H(Q).

In subsection 6.1 we show how to compute its Hochschild cohomology. Here we will
be working over an arbitrary field k of characteristic zero. In particular we will show
that

HHd,2−d(Q) =

{
k : d = 6, 8

0 : d > 2, d 6= 6, 8
.

Theorem 5.3 about the relationship between Hochschild cohomology andA∞-structures,
together with the homological perturbation theory of theorem 2.1 now implies the fol-
lowing: Given any A∞-algebra Q′ with cohomology algebra Q, we can find a quasi-
isomorphic A∞-algebra (Q, (md)) with m1 = 0 and m2 the multiplication on Q, and
additionally md = 0 for d = 3, 4, 5, 7. Furthermore, m6 and m8 will be cocycles, giving
elements a4(Q′) ∈ HH6,−4(Q) and a6(Q′) ∈ HH8,−6(Q). Beware that even though we
are using functional notation ai(Q′), a priori these cohomology classes depend on the
choices we made in trivializing the A∞-structure, and not only on Q′. However, theo-
rem 5.3 certainly implies that if Q′′ is another such A∞-algebra, and we end up with
a4(Q′) = a4(Q′′) and a6(Q′) = a6(Q′′), then Q′ and Q′′ are quasi-isomorphic.

We now turn to the algebraic geometry side of mirror symmetry. In subsection 6.2 we
will be working over an arbitrary algebraically closed field of characteristic zero. Theorem
3.3 about generators for the derived category of curves immediately implies that for any
elliptic curve E and any (closed) point P ∈ E, the two sheavesO andO(P ) split-generate
D∞(E). The cohomology algebra of the relations algebra, i.e. Ext∗(O⊕O(P ),O⊕O(P ))
is easy to compute and seen to coincide with Q.

We then turn to the key insight of Lekili and Perutz [11]. Namely we will consider
the entire Weierstrass family X = {X0X

2
2 = X3

1 + aX2
0X1 + bX3

0} ⊂ P2×A2 → A2. The
fibres Ea,b are elliptic curves when smooth, and exhaust all elliptic curves over k. The
group Gm acts on X in a natural way (by Weierstrass reparametrizations x 7→ u2x and
y 7→ u3y). We will show that the trivialisation procedure on the A∞-algebra of relations
can be carried out for all Ea,b (including the singular ones!) uniformly. One then obtains
classes a4(a, b) ∈ HH6,−4(Q) and a6(a, b) ∈ HH8,−6(Q) which depend polynomially on
a, b and moreover intertwine the action of Gm (recall from the end of 5.2 that HH∗,2−∗

also has a natural Gm-action). This is then shown to imply, for purely formal reasons,
that, up to choosing an appropriate basis, we have a4(a, b) = a and a6(a, b) = b. In
particular, (possibly singular) Weierstrass cubics yield all possible A∞-structures on Q.

An important observation is that given the derived category D∞ of an elliptic curve,
and the two generators O and O(P ), we can actually reconstruct the curve E. This is
because the ring

⊕
n HomH0D∞(O,O(3nP )) is in fact the projective coordinate ring of

an embedding of E. One may identify this ring as of the form considered in proposition
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2.6 about invariant rings of certain twist functors, so it is in fact an invariant of the
quasi-equivalence class of D∞.

Combining these ideas yields the important reconstruction theorem 6.4, which is the
heart of the algebraic geometry and homological algebra results proved in this essay.

We should mention that in fact the classes a4 and a6 are (in a precise sense) indepen-
dent of the choices made. This is shown in [11], but we do not need such a strong result
here.

We can finally turn to the symplectic geometry side. In section 6.3 we will heavily
use the properties of the Fukaya category stated in theorem 4.2. Using the identification
of Dehn twists with algebraic twists, and theorem 2.7 on generation criteria using twist
functors, we show that the two standard meridians A and B are indeed split-generators
of DπFuk(T ). We then compute the cohomology algebra of the A∞-algebra of relations
Q by counting (degenerate) polygons. This turns out to coincide with Q, as claimed.
Specialising our algebraic work to k = Λt, this concludes the abstract proof of mirror
symmetry.

It still remains to use the reconstruction theorem 6.4 to find out which elliptic curve
over Λt is actually the mirror of T (and in particular to rule out the possibility that the
mirror might be singular). This we will take up in the next section. The remainder of
this section will be used to fill in the details of the proof of abstract mirror symmetry
sketched above.

One final introductory remark. All that we have said would go through just as stated.
However, it turns out that the mirror correspondence becomes most natural if we identify
the two standard meridians A and B not with the sheaves O and O(P ), but instead with
O and O/P. As a matter of fact, there exists an automorphism of D∞(E) fixing O and
interchanging O(P ) and O/P. The reason why we prefer to work with O(P ) instead of
O/P is purely for technical convenience (the former being a line bundle).

We will show later that O(P ) = TO/P (O). Hence under the “correct” mirror corre-
spondence, the mirror of O(P ) is B′ = τB(A), which is a line of slope π/4. Of course,
since Dehn twists correspond to taking cones, the set {A,B′} generates Fuk(T ) if and
only if the set {A,B} generates. In fact, τ̃B is an autoequivalence of Fuk(T ) interchang-
ing the two generating sets, and so we find that there is a natural quasi-isomorphism
HomDπFuk(A⊕B,A⊕B)→ HomDπFuk(A⊕B′, A⊕B′). So working with {A,B} instead
of {A,B′} makes no difference.

6.1. The algebra Q

We begin by investigating the graded associative algebra Q which will turn out to be
the cohomology algebra of our A∞-algebras of relations. For this, we fix a field k of
characteristic 0 (in fact any characteristic different from 2 and 3 would also work).
We can most easily describe Q as the six-dimensional subalgebra of the matrix algebra
M2(k[s]/s2), where s is placed in degree one, spanned as a vector space by the following
elements:
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e =

(
1 0
0 0

)
, ep =

(
0 0
0 1

)
, g0 =

(
0 0
1 0

)
, f =

(
s 0
0 0

)
, fp =

(
0 0
0 s

)
, g1 =

(
0 s
0 0

)
.

This is an algebra, with the following non-vanishing compositions of basis elements:
epfp = fp = fpep, epep = ep, ef = f = fe, ee = e, eg1 = g1 = g1ep, epg0 = g0 = g0e,
g1g0 = f and g0g1 = fp. Its identity is 1 = e+ ep.

The algebra Q is most easily visualised as a two-object quiver, as shown below:

•
g0

::

e

MM

f [1]

-- •
g1[1]
{{

fp[1]





ep

mm

In the remainder of this section, we sketch how to establish the following result:

Proposition 6.2. With the above notation, we have

HHd,2−d(Q) =

{
k : d = 6, 8

0 : d > 2, d 6= 6, 8
.

Before that, we make plain the following important corollary, which motivates the
entire computation. It spells out the implications of our Hochschild cohomology com-
putation which can be obtained by applying the theory about the relationship between
Hochschild cohomology and A∞-structures of theorem 5.3, together with the homological
perturbation theory of theorem 2.1.

Corollary. Every A∞-algebra (Q′,md) with H(Q′) ' Q is quasi-isomorphic to a mini-
mal A∞-algebra (Q̃, m̃d) such that m̃d = 0 for d ≤ 5 or d = 7. The structure maps m̃6

and m̃8 define cocycles in HH6,−4(A) and HH8,−6(A).
Furthermore if (Q′,md) and (Q′′,m′d) are two minimal A∞-algebras as above such that

[m6] = [m′6] and [m8] = [m′8], then Q′ and Q′′ are gauge-equivalent.
In particular, the space of A∞-structures on Q up to quasi-isomorphism is at most

one-dimensional.

The starting point of the proof is the observation thatHHm,n(A) = ExtmA⊗Aop(A,A(n))
(see section 5.2). One may thus establish this theorem by finding an explicit projective
resolution of the finite-dimensional graded algebra Qe = Q ⊗ Qop. This seems rather
unenlightening. So we will first see what can be established by more abstract arguments.

The crucial observation now is that Q is a finite-dimensional algebra over a field. This
opens up quite a lot of general theory, see e.g. [22]. (While this reference works with
ungraded algebras and modules, the adaptations to the graded case are straightforward.)

The minimal idempotents of Q are e1 = e and e2 = ep. It follows that Pi = Qei
(i = 1, 2) are minimal indecomposable projective Q-modules, and all of these are of the
form Pi(n) for some n. These projectives have unique non-trivial simple quotients Si, and
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again in this way we obtain all the simple Q-modules. In fact, the Si are one-dimensional
k-vector spaces, spanned by the classes of e and ep, respectively.

It follows from general theory that the minimal projective modules of Qe are Pij(m) =
(eiQej)(m), and the simple modules are Sij(m) = Homk(Si, Sj)(m). Then, adapting the
argument of lemma 1.5 in [7] to the graded case, we obtain the following:

Lemma. Let · · · → Rn → Rn−1 → · · · → R1 → R0 → Q be a minimal projective
resolution of Q as a Qe-module. Then

Rn =
⊕
i,j,m

Pi,j(m)ExtnQ(Si,Sj(m)).

Now it is easy to verify that there exist exact sequences

0 ←−−−− S1 ←−−−− P1
×g0←−−−− P1

×fp←−−−− S2(−1) ←−−−− 0

0 ←−−−− S2 ←−−−− P2
×g1←−−−− P2(−1)

×f←−−−− S1(−2) ←−−−− 0

and hence there exist projective resolutions as follows:

· · · → P1(−3)→ P1(−3)
.−→ P2(−2)→ P2(−1)→ P1 → P1 → S1 → 0

· · · → P2(−4)→ P2(−3)
.−→ P1(−2)→ P1(−2)→ P2(−1)→ P2 → S2 → 0

Ignoring gradings, these resolutions are periodic of period four. The arrows with dots
above them indicate the end of the first period, and of course the end bits Si → 0 are
not repeated. After each period, gradings are increased by three.

Observing now that HomQ(Pi(n), Sj(m)) = HomQ(Si(n), Sj(m)) is zero unless i =
j = n = m, we deduce from the lemma that similarly Q admits over Qe a projective
resolution which, when ignoring gradings, is periodic of period eight, with gradings
increasing by six after each period. In particular it follows that for any l, we have
HHn,l−n(Q) = 0 for n sufficiently large. Indeed it is a subquotient of HomQe(Rn, Q(l −
n)) = HomQe(Rn([6n/8]), Q(l−n+[6n/8])), and Rn([6n/8]) only depends on n (mod 8)
by periodicity of the resolution, whereas Q(l−n+[6n/8]) will eventually live in arbitrarily
high degrees. Here [x] denotes the greatest integer less than or equal to x.

Working a little more carefully, it is easy to find exactly the modules occurring in
a minimal projective resolution of Q, and to give an explicit lower bound for n such
that HHn,2−n = 0. Then proving the proposition only boils down to finding a projective
resolution of Q to finite length (e.g. actually determining the maps between the modules
in the resolution) and computing the low-dimensional Hochschild cohomology. This is
a pain best left to a computer. If a particularly masochistic reader wishes to verify this
by hand, she will be aided by the fact that not only are the modules in the minimal
projective resolution periodic, but the maps turn out to be periodic, too. Hence the whole
proposition can be established by finding this periodic resolution. The computation has
been carried out in detail in [12, theorem 4].

The proposition has also been reproved (by different means) in [11].
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6.2. The derived category of an elliptic curve

Fix an algebraically closed field k of characteristic zero. Let E be a smooth pro-
jective curve and P ∈ E a closed point. By theorem 3.3 on generators for derived
categories of curves, we know that L = OE ⊕ OE(P ) is a split-generator. By the
construction of D∞(E) in section 3 and in particular proposition 3.1, we know that
HomHD∞(E)(L,L) = Ext∗(L,L). The vector space structure of this graded algebra can
be determined completely formally, and this we do first.

Indeed, recall some basic properties of Ext groups for schemes [8, section III.6]: (1)
if L is locally free and F ,G are coherent, then Ext∗(L ⊗ F ,G) = Ext∗(F ,L∨ ⊗ G), (2)
Ext∗(OX ,F) = H∗(X,F) and (3) that Ext∗ is bilinear. Here L∨ denotes the dual sheaf.
All three of these are easy consequences of the same statements for Hom = Ext0 and
universality of derived functors. Recall also Serre duality [8, section III.7]: if X is smooth
projective of dimension n, then Hk(X,L) ' Hn−k(X,L∨ ⊗ ωX)∨.

We now get back to the case X = E and L = OE ⊕OE(P ). From now on we will also
drop the subscript E. Using bilinearity, we can decompose the ext algebra into “matrix
entries”:

Ext∗(L,L) =

(
Ext∗(O,O) Ext∗(O(P ),O)

Ext∗(O,O(P )) Ext∗(O(P ),O(P ))

)
.

By this we mean that the left hand side decomposes, as a vector space, into a direct sum
of the four subspaces on the right, and that multiplication on the left corresponds to
matrix multiplication on the right together with the external multiplication on Ext∗ =
HomHD∞(E) . We can furthermore use properties (1) and (2) together with Serre duality
to express this in terms of sheaf cohomology spaces.

Let us now specialise to the case of elliptic curves. We obtain the following.

Proposition 6.3. Let E be an elliptic curve over an algebraically closed field k of
characteristic zero, and P ∈ E a closed point. Then

Ext∗(O ⊕O(P ),O ⊕O(P ))
∼−→ Q,

where Q is the graded algebra from the previous section.

Proof. Almost all of the work has already been done. We have H0(E,O) = k (i.e. there
are no non-constant regular functions on E, this holds for any connected projective
scheme), so in particular H0(E,O(−P )) = 0 (because O(−P ) is the sheaf of regular
functions vanishing at P ). Also H0(E,O(P )) = k because E cannot admit a rational
function with a unique simple pole (otherwise it would be isomorphic to P1). Observing
that the canonical bundle of elliptic curves is trivial, these computations suffice to show
that our ext algebra is isomorphic to Q as a graded vector space.

But essentially all compositions in A are determined formally (from the action of
identity elements of O and O(P ), and degree reasons). Let h0 denote a non-zero element
of Hom(O,O(P )) and h1 a non-zero element of Ext1(O(P ),O). To conclude the proof,
we need only show that h0h1 6= 0 and h1h0 6= 0, since these are the only compositions
which have not yet been determined.
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We have an exact sequence 0→ O → O(P )→ O/P → 0, where the first map is h0.Ap-

plying Ext∗(O(P ), •) we get Ext1(O(P ),O)
×h0−−→ Ext1(O(P ),O(P ))→ Ext1(O(P ),O/P ).

But Ext1(O(P ),O/P ) = H1(E,O/P ) (since O/P is a skyscraper sheaf), and this group
is zero (skyscrapers being flasque). Thus right-multiplication by h0 is surjective and
h1h0 6= 0.

Applying instead Ext∗(•,O) we get Ext1(O(P ),O)
h0×−−→ Ext1(O,O)→ Ext2(O/P,O).

The same argument as before goes through as soon as we establish that Ext2(O/P,O) =
0. But this follows by applying Ext∗(O, •) to our exact sequence and observing that
H2(X,F) = 0 for any line bundle F , by Serre duality.

We observe that the result is still true for singular cubics, if P is a smooth point,
although one has to argue a bit more carefully for that.

Equivariant A∞-structures and Weierstrass cubics

We would like to argue that the A∞-structures on Q coming from elliptic curves essen-
tially exhaust all possibilities (there are two exceptions, one formal and one not).

By this we mean the following. Fix a cubic curve E and a smooth point P, and set
QE,P = HomD∞(E)(OE⊕OE(P ),OE⊕OE(P )). This is a DGA, well-defined up to quasi-

isomorphism, and by the proposition from the previous section, we have H(QE,P )
∼−→ Q.

Hence, by homological perturbation theory, we get a minimal A∞-structure (mE,P
d ) on Q.

We would like to say that in this way we obtain all isomorphism classes of A∞-structures.
This is surprisingly tricky. Our method, following [11], will be to study how to turn

all the QE,P uniformly into minimal A∞-algebras.
More precisely, we put R = k[a, b] and let W = R(k). We then consider the family of

curves X = {X0Y
2 = X3 + aX2

0X + bX3
0} ⊂ P2

R, with its natural map to Spec(R) = A2.
The multiplicative group Gm (with Gm(k) = k×) acts on R by au = u4a and bu = u6b for
u ∈ k×. It acts on X by ((X0 : X : Y ), (a, b))u = ((X0 : u2X : u3Y ), (u4a, u6b)), covering
the action on Spec(R). For w = (w1, w2) ∈ W we denote by k(w) = R/(a− w1, b− w2)
the residue field and by Xw = X ×R k(w) the fibre. The action of Gm on X induces
isomorphisms u : Xw → Xwu .

We will construct a DGA B, linear over R and with an action of k×. It will have
the property that Bw := B ⊗R k(w) is quasi-isomorphic to QXw,Pw . We will show that
H(B)⊗ k(w)→ H(Bw) is an isomorphism.

By an equivariant splitting of B we mean a decomposition B = H ⊕ im(d)⊕ T, where
all the summands are k×-invariant, and H ⊕ im(d) = ker(d). This yields an equivariant
retraction r : B → B of degree -1 (d : T → im(d) is an isomorphism; let r|im(d) = d−1,
r = 0 on the complement). If we denote by i : H(B) → B and p : B → H(B) = H
the natural maps, then r is a homotopy between ip and 1. It follows that we can apply
the homological perturbation lemma 2.1 to construct a minimal A∞-structure on H(B),
linear over R, which we will denote by A. Since H = H(B) is k×-equivariant, k× acts
on A. We will check that the action on degree i elements (i = 0 or i = 1 are the only
possibilities) is pure of weight i, i.e. hu = u|h|h for h ∈ H. For each w ∈ W we get a

30



minimal A∞-structure Aw = A ⊗R k(w) on Q. We denote the structure maps by mw
d ,

they are (vectors of) polynomials in the entries of w.
By an equivariant A∞-structure (md) on a graded vector space V which comes with

a G-action, we mean an A∞-structure such that md(a
g
d, . . . , a

g
1) = md(ad, . . . , a1)g for

all d > 0, ai ∈ V and g ∈ G. We will check that B is a k×-equivariant DGA. The
explicit formulas for the A∞-structure on A then imply that A is a k×-equivariant A∞-
algebra. This, together with our computation of the k×-action on A, will imply that
mwu

d = ud−2mw
d . Since the mw

d are also polynomials, an easy computation will show

that mw
d = 0 for d < 6 or d = 7, that m

(a,b)
6 = a and that m

(a,b)
8 = b. It follows that

the A∞-structures Aw automatically satisfy mi = 0 for i = 3, 4, 5, 7, and exhaust all
possibilities, by the corollary to proposition 6.2, computing the Hochschild cohomology
of Q.

Before checking the details of the above argument, we record the following theorem
which follows from it:

Theorem 6.4. Suppose C is a split-closed triangulated A∞-category, generated by objects
O and O(P ). Assume further that HomH∗(C)(O⊕O(P ), O⊕O(P )) ' Q, where Q is the
graded algebra from section 6.1.

Let O/P denote the cone on g0 : O → O(P ), let S denote the graded ring
⊕

n HomH0(C)(O, T
3n
O/P (O)),

and put E = Proj(S). Then E can be embedded in P2 as a cubic curve (i.e. S is gen-
erated in degree one by three elements satisfying a homogeneous cubic relation), and if
E is smooth, then there exists a quasi-equivalence of A∞-categories between C and the
enhanced derived category D∞(E) of E.

Proof. Let Q′ denote the A∞-algebra structure on Q coming from C. By our above
classification, Q′ ' Aw for some w. If Xw is smooth, its enhanced derived category
D(Xw) is split-generated by O⊕O(P ), and so C is quasi-equivalent to D(Xw) by theorem
2.4 on uniqueness of split-triangulated envelopes. Even if Xw is not smooth, C is quasi-
equivalent to the split-closed triangulated envelope of O⊕O(P ), a subcategory of D(Xw)
(containing O(nP ) for all n). Moreover, the ring computed in C is isomorphic to the
ring computed in D∞(Xw), by proposition 2.6 on total endomorphism rings defined via
twist functors.

Observe now that Ext∗(O/P,O(nP )) is one-dimensional, generated in degree one.
Hence Tn+1 := TO/P (O(nP )) fits into the exact triangle O/P [−1]→ O(nP )→ Tn+1 → .
We have an exact sequence 0→ O(nP )→ O((n+ 1)P )→ O/P → 0, yielding the exact
triangle O/P [−1] → O(nP ) → O((n + 1)P ) → . Thus Tn+1 ' O((n + 1)P ), since each
is the cone on a non-zero morphism, unique up to rescaling. Hence T 3n

O/P (O) = O(3nP ).

It hence remains to show the following: fix w ∈W. Let S =
⊕

n HomDb(Coh(Xw))(O,O(3nP )).
Then Proj(S) is isomorphic to Xw. But this is obvious (O(3P ) being very ample).

X is covered by two affine opens U = {X0 6= 0} and V = {X2 6= 0}. We write
U = {U, V } for this cover. X has the smooth subvariety P = {X0 = 0}. We set
B = Č•(U ,Hom(OX ⊕ OX (P ),OX ⊕ OX (P )). Here by Č•(U ,F) we denote the Čech
complex with respect to the cover U and coefficients in the sheaf F .

31



Lemma. B has the desired properties. That is:

1. B is a DGA,

2. k× acts on B,

3. the differential and multiplication of B are k×-equivariant,

4. B admits a k×-equivariant splitting,

5. H(B)⊗ k(w)→ H(Bw) is an isomorphism, and Bw is quasi-isomorphic to QXw,Pw

6. the weights of the k×-action on H(Bw) coincide with the degree.

Proof. We put F = Hom(OX ⊕OX (P ),OX ⊕OX (P )). We recall that OX (P ) is the line
bundle of functions with poles of order at most one along the smooth codimension one
subvariety P. Explicitly, OX (P )(U) = OX (U) and OX (P )(V ) = x/yOX (V ), as subsets
of the function field K(X ).

(1) There is a natural multiplication on B coming from the cup product Čp(U ,F) ×
Čq(U ,F)→ Čp+q(U ,F) and the homomorphism composition map F ⊗ F → F .

(2) Gm acts on X and hence k× acts on K(X ). Since the Gm-action preserves U, V
and P it follows that k× acts on B.

(3) There is a canonical isomorphism F = O ⊕ O(P ) ⊕ O(−P ) ⊕ O (“matrix en-
tries”). The multiplication map F × F → F then corresponds to actual multiplication
of elements in K(X ). Since the cup product is clearly k×-equivariant, it follows that the
multiplication on B also is. The differential is just the Čech differential, which is also
clearly equivariant.

(4) It suffices to look at the matrix entries OX and OX (±P ) separately. Begin with
OX . Notice that OX (U) is a free R-module with basis xiyj for i ≥ 0, j = 0, 1. Similarly
OX (V ) is free with basis uivj for u = 1/y, v = x/y and i ≥ 0, v = 0, 1, 2. The kernel
of Č0(U ,OX ) → Č1(U ,OX ) is given by the free R-module with basis (1, 1), clearly
this is equivariant and admits an equivariant complement. OX (U ∩ V ) is free with
basis xiyj , i ∈ Z, j ≤ 1. The image of Č0(U ,OX ) → Č1(U ,OX ) is free with basis xiyj ,
(i, j) 6= (1,−2). Again this is clearly equivariant with an obvious equivariant complement.
The cases OX (±P ) can be handled by a similar argument.

(5) Bw is naturally isomorphic to Č•({Uw, Vw},Hom(OXw⊕OXw(Pw),OXw⊕OXw(Pw)).
To see that this is quasi-isomorphic to QXw,Pw = HomD∞(Xw)(OXw ⊕ OXw(Pw),OXw ⊕
OXw(Pw)), it suffices to observe that, for any locally free sheaf L with an injective reso-
lution I•, we have a diagram of quasi-isomorphisms

Č•Hom(L,L)
a−−−−→ Tot Č•Hom•(L, I)

b←−−−− Tot Č•Hom•(I, I)

c

x
Hom•(I, I).

Indeed, Tot Č• computes hypercohomology, which factors through quasi-isomorphisms,
and the map of complexes of sheaves underlying b is a quasi-isomorphism by proposition
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3.1. (For basic facts about hypercohomology, see [23, section 5.7].) For any injective
sheaf J and coherent sheaf F , Hom(F , J) is flasque and hence acyclic, and so the
hypercohomology of Hom•(I, I) is just the cohomology of its global sections, whence
c is a quasi-isomorphism. But we already know that Ext∗(L,L) = H∗(L∨ ⊗ L) =
H∗(Hom(L,L)) = Č∗(Hom(L,L)), so a is a quasi-isomorphism as well.

Hence H(B)⊗ k(w)→ H(Bw) is an isomorphism (we have computed both sides!).
(6) H0(X ,OX ) = k has weight zero k×-action, similarly for OX (±P ). H1(X ,OX ) is

represented by the Čech cocycle x2/y which has weight one. Again OX (±P )) can be
handled by a similar argument.

We recall that (5) allows us to construct a k×-equivariant minimal model A for B. We
now exploit (6).

Lemma. 1. mwu

d = ud−2mw
d for u ∈ k×,

2. mw
d = 0 for d = 3, 4, 5 or d = 7.

3. Identify HH6,−4(A) and HH8,−6(A) with k. Then the map w 7→ ([mw
6 ], [mw

8 ]) ∈
HH6,−4(A)⊕HH8,−6(A) ' k2 is given by (a, b) 7→ (Ca,Db) for non-zero constants
C and D.

Proof. We recall that md(a
u
d , . . . , a

u
1) = md(ad, . . . , a1)u. The left hand side is the same

as m
(a,b)
d ([ad]

u, . . . , [a1]u), whereas the right hand side is m
(a,b)u

d ([ad], . . . , [a1])u. Using
(6), this implies that mw

d ([ad], . . . , [a1])u|ad|+···+|a1| = mwu

d ([ad], . . . , [a1])u|ad|+···+|a1|+2−d.
(The extra factor of u2−d comes about because md has degree 2− d.) This immediately
implies (1).

We now know thatmw
d is a function fromW to some vector space (namely Hom(Q⊗d, Q(2−

d))) which, in our preferred bases, has polynomial entries. Let f(a, b) be one such entry.
We know that f(u4a, u6b) = ud−2f(a, b). Differentiating with respect to u and setting
u = 1 yields

4a
∂f

∂a
+ 6b

∂f

∂b
= (d− 2)f. (4)

This is going to apply to all homogeneous components of f separately. Suppose f is
homogeneous of degree r. Then a∂f∂a + b∂f∂b = rf, and so we get b∂f∂b = αf for some
constant α. This is only possible if f is a pure power (i.e. f = ar or f = br). But then
equation (4) implies that 4r = d− 2 (if f = xr) or 6r = d− 2 (if f = yr). Hence (2).

Finally, everything in (3) is clear, except that C andD might vanish. However, if either
of them vanishes, then we obtain at most two isomorphism classes of A∞-structures on
Q in this way, by the arguments of the corollary to proposition 6.2. But non-isomorphic
Xw yield non-isomorphic A∞-structures, by the argument of theorem 6.4, which allows
us to recover the isomorphism class of Xw from Aw. This is a contradiction, since there
are infinitely many isomorphism classes of elliptic curves.
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6.3. The Fukaya category of the torus

We now turn to the symplectic side of the homological mirror symmetry conjecture
for elliptic curves. We thus let T denote the standard torus R2/Z2, with its standard
symplectic and complex structure. We choose the Maslov cover corresponding to the
holomorphic trivialisation of ∆, whence all non-contractible embedded curves and all
symplectomorphisms can be graded (refer to the discussion in section 4.3.2). We let
throughout Fuk denote the Fukaya category of the torus with respect to these choices.

Generation

We first need to show that Fuk is generated by two objects, corresponding to O and
O/P. Let A and B be two meridians (so they in particular freely generate H1(T,Z)). For
definiteness, we assume that the basis A, B at their intersection is positively oriented
– even more concretely, we can just assume that A corresponds to the line (t, 0) and
B to the line (0, t). We claim these serve as generators. We aim to use theorem 2.7 on
split-generation criteria using twists, by showing that for X ∈ Fuk, there exists n > 0
such that HomH0(Fuk)(X, (TATB)n(X)) = 0. This is clearly sufficient.

Definition. Let (M,ω,L) be a graded manifold and φ a graded automorphism. Choose a
compatible almost-complex structure I and realise L as LΩ2 . We say that φ is of constant
sign (with respect to these choices) if the lift s̃φ : LGr(M)→ R (compare section 4.3.1)
is never zero.

Proposition 6.5 ([19], Lemma 9.2). Let (M,ω, I,Ω2) be a graded manifold as above
and φ a graded automorphism such that φd is of constant sign for some d > 0. Assume
additionally that M is compact and connected. Let X1, . . . , Xn ∈ Fuk(M) be Lagrangian
spheres such that τX1 . . . τXn is Hamiltonian isotopic to φ.

Then X1, . . . , Xn split-generate Fuk(M).

Proof. We know that the Dehn twists τXi correspond to the twist functors TXi , and that
φ and τX1 . . . τXn act quasi-isomorphically on Fuk(M) (by standard properties of the
Fukaya category, i.e. theorem 4.2).

It hence suffices to show, by theorem 2.7, that for X ∈ Fuk(M) and n > 0 sufficiently
large, HomH0(Fuk(M))(X,φ

n(X)) = 0. We may thus replace φ by φd and so assume that
φ is of constant sign.

Since both LGr(2n) and M are compact and connected (the former being a quotient of
U(n)), it follows that LGr(M) is compact and connected. In particular s̃φ is either always
positive or always negative. Let us assume that s̃φ is always positive (the argument being
essentially the same if it is always negative). Then by compactness, there exists ε > 0
such that s̃φ > ε. Then s̃φn > nε.

Let s̃X denote the grading of X. By compactness of X, this function is bounded, say
|s̃X | < r. It follows from the formula s̃φ(L) = s̃L ◦ φ−1 + s̃φ ◦ sL ◦ φ−1 that for n suitably
large, s̃φn(X) > r+ 2. Then the same inequality with r+ 1 instead of r+ 2 will hold for a
sufficiently small Hamiltonian perturbation of φn(X), which we may assume transverse
to X. It follows that all intersection points have Maslov index ≥ 1. This follows from
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proposition 4.1 (which shows how to compute Maslov indices using lifts) for the 2D case,
which is all that we will use in the sequel. For the general case, see the reference.

This concludes the proof.

It remains to apply this to our case. A symplectomorphism φ of T induces an action
on π1(T ) = Z2, i.e. an element Mφ of SL2(Z). Then Mφ itself acts on T , and it is well

known that φ and Mφ are homotopic. In the case of Dehn twists, MτA =

(
1 −1
0 1

)
and MτB =

(
1 0
1 1

)
. In this case the symplectomorphisms and their linearisations are

not only homotopic, but Hamiltonian isotopic. One way to see this is to observe that
MτA is actually a model Dehn twist corresponding to a piecewise linear but non-smooth
choice of f in the notation of section 4.2.1, implanted via a Weinstein neighbourhood
which actually wraps once around the whole torus. Nonetheless it is easy to see that the
arguments from section 4.2.1 generalize to show our claim.

It follows that τAτB is Hamiltonian isotopic to MτAMτB =

(
0 −1
1 1

)
. This rotates

the first basis vector by π/2 and the second by π/4. From this one easily sees it is of
constant sign (since it is linear). Its value varies by 1/4 without changing sign (for some
choice of grading), and hence any grading will be of constant sign.

Counting polygons

As explained at the beginning of this sections, for technical reasons (i.e. having studied
the derived category of E in terms of O and O(P ) instead of O and O/P ), we should
really be using the generating set A and B′ = τB(A). However, as also explained there,
this will yield the same relations algebra (up to quasi-isomorphism) as using the more
standard generators A and B, so we will do this here.

We now determine HQ = HomHDπFuk(A⊕B,A⊕B) geometrically, using the methods
explained in section 4.4. This is straightforward, after using bilinearity of Hom to break
this up into Hom(A,A), Hom(A,B) etc. Indeed, we can choose the evident gradings for
A and B, corresponding to constant functions with values in [0, 1). Even more explicitly,
we may put s̃A ≡ 0 and s̃B ≡ 1

2 . This induces orientations for A and B. We will also
need to consider small Hamiltonian perturbations A′ and B′.

We have assembled sketches of the relevant situations in figure 6.3. We begin with
determining Hom(A,B) and Hom(B,A), so consider subfigure 2(a). Since A and B have
a unique intersection point, it follows immediately that both spaces are one-dimensional,
and we need only determine the grading. This is given by the Maslov indices µp(A,B)
and µp(B,A) respectively. We have, by theorem 4.1 determining the Maslov index
in terms of the lifts, that µp(A,B) = −[s̃B(p) − s̃A(p)] = −

[
1
2 − 0

]
= 0, and that

µp(B,A) = −
[
0− 1

2

]
= 1.

We next consider Hom(A,A). We already know by theorem 4.2 that this must have
cohomology algebra isomorphic to the singular cohomology H∗(A,Λt), which is Λt ⊕
Λt(−1) (since A is a circle). It seems enlightening to compute this, by perturbing A
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slightly to yield a Hamiltonian isotopic curve A′. One such perturbation is shown in
subfigure 2(b). We see that Hom(A,A′) is two-dimensional, generated by p and q.
Also note that s̃A′(p) = −ε < 0, and so µp(A,A

′) = −[−ε − 0] = 1. In contrast,
s̃A′(q) = ε > 0, and so µq(A,A

′) = 0. It follows that Hom(A,A′) might carry a non-
zero differential d(q) = λp. From the explanations in section 4.4 describing the Fukaya
category, we determine the differential by looking for immersed bigons with sides A
and A′, up to equivalence. For reference, the form of such bigons is sketched in the
figure. One sees that there are precisely two such bigons, labelled F and G in the
figure. We thus find dq = (tF ± tG)p. Here the sign depends on conventions which we
have not explained. But observe that we must have HomHFuk(A,A′) 6= 0, since one
element of this set must represent 1A. This can happen only if dq = 0, and then indeed
HomHFuk(A,A′) ' H∗(A,Λt), as expected. Note also that dq = 0 is indeed possible:
the perturbation is Hamiltonian, so F and G have the same area, and so dq = 0 if the
negative sign is chosen above.

A similar argument applies for Hom(B,B). We thus find that, as a vector space,
H(Q) ' Q (where Q is the algebra from section 6.1 again). As when we investi-
gated the ext algebra of an elliptic curve, again almost all compositions are deter-
mined formally, and we can show that H(Q) ' Q as algebras provided that we show
HomHFuk(A,B) HomHFuk(B,A) 6= 0 and HomHFuk(B,A) HomHFuk(A,B) 6= 0.

That is to say, we need to determine some m2, i.e. count some triangles. Con-
sider now subfigure 2(c). We will show that HomHFuk(B,A′) ⊗ HomHFuk(A,B) →
HomHFuk(A,A′) ' HomHFuk(A,A) is not the zero map. In the figure, we have the
two meridians A and B, and the perturbation A′ of A. For illustrative purposes we
have drawn two copies of the square representing the torus, which we think of as two
fundamental domains of the lattice Z2 ⊂ R2. On T, as before A and B have a unique in-
tersection point, denoted q. The point q′ is equivalent to it. Similarly A′ and B intersect
in a unique point p, and there is another equivalent intersection point p′ drawn. Also A′

and A intersect in r and s. As before, we determine |q| = 0, |p| = 1, |r| = 1 and |s| = 0.
We suspect m2(p, q) = λr, for some λ 6= 0. (Indeed r is the only intersection point of
the right degree of B and A′.) As explained in section 4.4, to compute this product,
we need to count triangles. The type of triangle we are looking for is sketched in the
figure: triangles with vertices (in clockwise order) q, p and x, connected along segments
of curves as indicated. Also in this figure we shaded one such triangle.

The main observation is now that this is the only such triangle, up to equivalence.
Namely it is the only such triangle with one vertex given by precisely q (and not an
equivalent point). Indeed, the side q → p of such a triangle is the only side along which
the y coordinate can change by more than one, and even along the other two sides
together it can never change by one (since the other sides lie on A or A′). But going
once round the whole triangle must leave the y coordinate unchanged, so if it changes
by more than one once it must do so twice, which is impossible. It follows that the
second vertex of the triangle must lie in the same fundamental domain as we started,
i.e. it must be p. The rest is now easy, since the map of the triangle into T must be
orientation-preserving and an embedding away from the corners. Hence the second side
of the triangle must “start out to the left” (orientation), and the third vertex must be r
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Figure 2: Computing Floer chain complexes.
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(and not one of its translates), since otherwise we cannot get an embedding.
The other composition is treated entirely similarly, and so the proof of abstract mirror

symmetry is complete.

7. Illustrations of mirror symmetry for elliptic curves

In this section we intend to reap in the benefits of all the hard work that went into
proving theorems 6.1 and 6.4. Recall that we have proved there that there exists a
quasi-equivalence ψ : DπFuk(T )→ D∞(E) for some cubic curve E. It is determined by
ψ(A) = O and ψ(B) = O/P, where A and B are the standard meridians.

However, we do not know what curve E is. We do not even know if it is smooth.
We remedy this problem in subsection 7.1. Indeed theorem 6.4 also includes a recipe
on how to determine E: start with the two meridians A and B corresponding to O and
O/P. Consider the ring S =

⊕
n≥0 HomH0DπFuk(T )(A, T

3n
B (A)). This is the projective

coordinate ring of E. Using some explicit polygon counts, we can find a defining equation
for E, check it is smooth, and compute its j-invariant.

Once we have done that, we investigate in somewhat more detail the mirror corre-
spondence ψ. In subsection 7.2, we define the rank and slope of a vector bundle, and
explain how the slope m/n of a geodesic circle C in T corresponds to the rank and slope
of the vector bundle it represents in D∞(E) under the mirror correspondence.

Observe that the group SL2(Z) acts on T, and hence it (or rather its central extension)
acts on Fuk(T ). By the mirror correspondence, there must be a corresponding action
on D∞(E). In subsection 7.3 we construct this action, and use it to prove the sketched
correspondence of rank and slope from the previous subsection.

7.1. Determination of the mirror curve

We now carry out the recipe sketched above. To do this, we work in the universal cover
R2 of T. We note that ρ(x, y) = (x, y + 3x) is a model for τ3

B. We put Li = ρi(A).
We must find (three) generators of S1 = Hom(A,L1) and a cubic relation they satisfy

in S3 = Hom(A,L3). For this, we put Xi = (i/3, 0) (for i = 0, 1, 2), Yi = (i/6, 0)
(for i = 0, . . . , 5) and Zi = (i/9, 0) (for i = 0, . . . , 8). Here and elsewhere, indices
will be understood “ (mod n)” for appropriate n (e.g. n = 3 for the Xi). We note that
Hom(A,Li) is a graded vector space concentrated in degree zero, of dimension 3i. Indeed
Xi ∈ Hom(A,L1), Yi ∈ Hom(A,L2) and Zi ∈ Hom(A,L3) are the natural generators of
these vector spaces (i.e. intersection points).

What we need to do, then, is to write ten cubic monomials in the Xi in terms of the
nine basis elements Zj of Hom(A,L2). Here we have to recall that the ring structure on
S is produced “via ρ”. So for example by X1X2 we mean m2(ρ(X1), X2) ∈ Hom(A,L2),
where we consider ρ(X1) ∈ Hom(ρ(A), ρ(L1)) = Hom(L1, L2).

So what we really want to do is to first write the six quadratic monomials in the Xi in
terms of the Yj , and then work out the cubic monomials from there. Here we are using
the fact that we know that S must be commutative and associative.
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Let us consider an example. Suppose we want to express X2
0 in terms of the Yj . We

are thus looking for triangles with vertices X0, ρ(X0) = X0 and some Yj . Consider figure
7.1. This shows the universal cover, in which all points and curves (lines) are replicated
infinitely many times. Shaded are two triangles F and G of the form we are looking for.
It is easy to see that all other triangles contributing to X2

0 are translates and scalings of
these two triangles. It follows that X2

0 = A0Y0 +A3Y3. We determine A3. This means we
have to count scalings of F. One easily sees that these are indexed by integers n ∈ Z, and
have vertices (0, 0), (2n+ 1, 6n+ 3) and (0, n+ 1/2). The triangle F shown corresponds
to n = 0. The triangle corresponding to n has area 1/2.(n+ 1/2).(6n+ 3) = 3(n+ 1/2)2.
Hence

A3 =
∑
n∈Z

t3(n+ 1
2)

2

.

This is a classical theta series. It turns out that all the triangle counts we have to
do yield these. Zaslow [24] has carried out the counts in detail. His results can be
summarised as follows. Write

Ai =
∑
n∈Z

t3(n+ i
6)

2

Bi =
∑
n∈Z

t9(n+ i
18)

2

.

Then

XiXj = Ai−jYi+j +Ai−j+3Yi+j+3

YiXj = B2j−iZi+j +B2j−i+6Zi+j+3 +B2j−i+12Zi+j+6.

From this, working out the linear relation among the cubic monomials is entirely routine,
if rather cumbersome. From it the j-invariant of the mirror can be computed. The result
is as follows.

Proposition 7.1 (Zaslow). Put u = A2B0 +A1B9, p = A0B0 +A3B9, q = A0B6 +A3B3

and z = 2q+p
3u . Then the cubic relation satisfied by the Xi is

X3
0 +X3

1 +X3
2 − 3zX0X1X2 = 0.

This is a smooth cubic, with j-invariant given by

jFuk = −27
z3(z3 + 8)3

(1− z3)3
.

This answers completely the question posed for this subsection. Moreover, Zaslow
observed that, in the way we have presented mirror symmetry, a small miracle happens.
Consider, for τ in the upper half plane, the complex torus Eτ = C/Z ⊕ τZ. This is an
elliptic curve, and its j-invariant is a classical function. It is usually written in terms of
q = e2πiτ , because it then has a Laurent series expansion with integral coefficients [13]

j(q) =
1

q
+ 744 + 196884q + . . .
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Figure 3: Some of the triangles contributing to X2
0 .
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Theorem 7.2. The mirror curve to T is the smooth plane cubic over Λt with j-invariant
j given by the Laurent expansion of the classical j(t)-function.

In principle, this can be proven by showing that jFuk(t) is a modular function and then
computing the first few terms of the series expansion (since spaces of modular functions
are finite-dimensional). However, this is fairly non-trivial. We instead contend ourselves
with verifying the claim order-by-order, for as many terms as one wishes (which is of
course not a proof, but still quite convincing): the python script series.py in figure
4 in the appendix can be used to compute the series expansion of jFuk(t), to any order
desired. It proceeds by brute force, i.e. computing the series of the theta functions
appearing in jFuk(t) to sufficiently high order, and then inverting them and multiplying
them together. We have used it to verify the claim up to O(q4).

Mirror symmetry over C An interesting observation is that, given a complex number q
in the upper half plane, one may form an A∞-category Fukq(T ), which is obtained from
Fuk(T ) by “substituting” q for t. That is to say, the appropriate series in the definition
actually converge. The above results then imply that if E is an elliptic curve over C
with j-invariant j(q) (for some particular q ∈ C), then D∞(X) is quasi-equivalent to
DπFukq(T ). Hence, over C, we have found mirrors for all elliptic curves.

7.2. Pictorial mirror symmetry: rank and slope of vector bundles

Our proof of mirror symmetry is rather abstract. In particular, determining the image
ψ(C) of an embedded circle C ∈ Fuk(T ) under the mirror correspondence is not at all
trivial. Here we intend to describe at least what kind of object ψ(C) is. In fact, one can
show that it is always (a shift of) a locally free sheaf or a skyscraper sheaf, and so one
very natural question is what rank and first Chern class ψ(C) has. This is the problem
we tackle in this subsection.

Suppose A is a triangulated A∞-category and B is an abelian group. A map e :
Ob(A)→ B is called an Euler characteristic (or additive) if for any morphism f : X → Y
in A, we have 0 = e(X)− e(Y ) + e(cone(f)). It is clear that e is determined by its value
on any set of generators (not split-generators) of A. For example, if A = D∞(X), for X
a smooth projective variety, then e is determined by its values on vector bundles (since
these are generators, by theorem 3.2).

Suppose A is a triangulated A∞-category over k and X ∈ A is of finite cohomo-
mological dimension, by which we mean that for all Y ∈ A there exists n such that
Hr HomA(X,Y ) = 0 for all |r| > n, and also dimkH

r HomA(X,Y ) <∞ for all r. In this
case e(Y ) =

∑
i(−1)i dimkH

i HomA(X,Y ) =: χ(H∗Hom(X,Y )) is an Euler character-
istic on A. This follows from the fact that H0A is a triangulated category. A similar
result holds for Hom(•, X).

Suppose now X is a smooth projective variety and P ∈ X is a closed point. We define
two Euler chararacteristics onD∞(X), called rank and slope, by rk(F) = χ(Ext∗(F ,OX/P ))
and sl(F) = χ(Ext∗(O,F)) = χ(H∗(X,F)). It is easy to see that for locally free sheaves,
this definition of rank agrees with the conventional one, and so is in particular indepen-
dent of the choice of P . Also if X is an elliptic curve and L is a line bundle, then, by
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the Riemann-Roch theorem and Serre duality, the slope of L equals its degree (or first
Chern class).2

Of course, we can combine these two Euler characteristics and form a map k :
D∞(E) → Z2,F 7→ (sl(F), rk(F)). This corresponds under mirror symmetry to a map
k′ : Fuk(T )→ Z2, defined by the same formulas.

There is another geometrically inspired similar-looking map from Fuk(T ). Namely,
recall that objects of Fuk(T ) (not of DπFuk(T )) are represented by embedded circles
with extra data. We thus have a map h : Fuk(T ) → H2(T ) ' Z2. Explicitly, if C is a
curve represented in the universal cover of T by a line of slope m/n (and oriented “to
the right”), where the fraction is in lowest terms and n > 0, then h(C) = (m,n). This
explains the term “slope”.

We claim that h = k′, where defined. This is not particularly hard to check by hand.
We verify here that h(Cx) = k′(Cx), where Cx is the curve corresponding to the line
{(t, x)|t ∈ [0, 1]} parallel to A. The general case will be established in the next subsection.

The claim is clear if x = 0, since C0 = A, and ψ(A) = O has rank one and slope
(i.e. degree) zero Moreover, if x 6= 0, then HomFuk(T )(A,Cx) = 0 (since there are no
intersection points) and so sl′(Cx) = χ(H∗HomFuk(T )(A,Cx) = 0. On the other hand
HomFuk(T )(Cx, B) is one-dimensional, generated in degree zero, by precisely the same
picture as for t = 0, and so rk′(Cx) = 1.

7.3. The braid action

The group SL2(Z) acts on T in a natural way. It clearly preserves the symplectic form
(since determinant one matrices preserve volume), and so by the discussion in subsection
4.3.2, all of its elements are gradable. In fact, it is well known that SL2(Z) is generated
by the standard linear Dehn twists MA and MB (compare section 6.3) with respect to
the two relations (MAMB)6 = 1 and MAMBMA = MBMAMB. Denote by s1 = τ̃A
and s2 = τ̃B the standard gradings of the Dehn twists. It follows that (s1s2)6 = 1[k1]
and s1s2s1 = s2s1s2[k2]. It is easy to check that MA, MB and MAMB all rotate their
arguments by small positive amounts. From this observation it is easy to see that k1 6= 0
and k2 = 0. (One may in fact easily check that k1 = 2, but we do not really need this.)
It follows that the subgroup of Symgr(T ) generated by s1 and s2 is isomorphic to the
braid group

B3 = 〈s1, s2|s1s2s1 = s2s1s2〉.

We have hence found a braid action on Fuk(T ). Via the mirror correspondence ψ, this
yields a braid action on D∞(E) as well (recall that quasi-equivalences of A∞-categories
admit quasi-inverses).

We can construct this action on D∞(E) directly. Indeed, by theorem 4.2 summarizing
the properties of the Fukaya category, s1 acts by TA on Fuk(T ), and similarly s2 acts
by TB. It then follows from theorem 2.5 (which states that twist functors are preserved

2One may show that the first Chern class c1 is also an Euler characteristic. If X is not an elliptic curve,
this is probably a better definition for the slope than ours. Since we only deal with elliptic curves,
we will ignore this problem.
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by A∞-functors) that under ψ, the action of s1 is via Tψ(A) = TO and the action of s2

is via TO/P . This by itself is already quite an interesting statement, since it is a priori
not at all clear that these twists are invertible (although this follows from the theory of
“spherical objects”).

Comparison of h and k

We now exploit this braid action to show that h(C) = k(ψ(C)) for and C ∈ Fuk(T ).

Lemma. For C ∈ Fuk(T ), F ∈ D∞(E) and s ∈ B3, we have

h(sC) = sh(C)

k(sF) = sk(F),

where the action on Z2 is via the natural quotient SL2(Z).

Proof. It suffices to prove this for s = s1 and s = s2 (since these generate B3), which act
byMτA andMτB on Z2 respectively. On the symplectic side, they correspond respectively
to τ̃A and τ̃B, whereas on the algebraic side they correspond to TO and TO/P . We thus
need to show h(τ̃AC) = MτAh(C), for C ∈ Fuk, and so on.

This is obvious on the symplectic side, i.e. for h. On the algebraic side, we just observe
the exact triangles (from the definition of twist functors)

O ⊗ Ext∗(O,F)→ F → TO(F)→
O/P ⊗ Ext∗(O/P,F)→ F → TO/P (F)→ .

Since sl and rk are Euler characteristics, it follows that

sl(TO(F)) = sl(F)− sl(O ⊗ Ext∗(O,F)) = sl(F)

rk(TO(F)) = rk(F)− rk(O ⊗ Ext∗(O,F)) = rk(F)− χ(Ext∗(O,F)) = rk(F)− sl(F)

sl(TO/P (F)) = sl(F)− sl(O/P ⊗ Ext∗(O/P,F)) = sl(F)− χ(Ext∗(O/P,F))

rk(TO/P (F)) = rk(F)− rk(O/P ⊗ Ext∗(O/P,F)) = rk(F).

Here we have used that Euler characteristics are additive, change sign under shifts, and
that k(O) = (0, 1), k(O/P ) = (1, 0).

It remains to show that χ(Ext∗(O/P,F)) = −rk(F), and as usual it suffices to show
this for vector bundles. One simple way to see this is to consider the exact triangle
O → O(P )→ O/P. If we write e(F ,G) = χ(Ext∗(F ,G)), then we obtain

e(O/P,F) = e(O(P ),F)− e(O,F)

= e(F∨,O(−P ))− e(F∨,O)

= −e(F∨,O/P )

(where in the second line we have used that Ext∗(F ⊗ L,G) = Ext∗(F ,G ⊗ L∨) twice).
But this last expression is just −rk(F∨) = −rk(F). This concludes the proof.
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Theorem 7.3. For any C ∈ Fuk(T ), we have h(C) = k(ψ(C)).

Proof. It is well known that SL2(Z) acts transitively on subsets of Z2 of the form Zr =
{(m,n)| gcd(m,n) = r} (this is essentially a restatement of Euclid’s algorithm). Hence
it follows from the lemma that we may restrict to curves C with h(C) = (r, 0). Recalling
that contractible curves are not gradable (compare section 4.3.2), we know r > 0. We
will in fact show that r = 1 is the only possibility.

An argument using the theory of mean curvature flow [6], which we need to omit
for space reasons, shows that if r = 1, any such curve C is Hamiltonian isotopic to a
geodesic C ′. The geodesics of T correspond to straight lines (of rational slope) in the
universal cover, and we have described the effect of h on such curves before. It follows
that C ′ = Cx, for some x, in the notation of subsection 7.2. But this is the case we
already verified there.

If r > 1, then we may still apply mean curvature flow to find a Hamiltonian isotopic
curve C ′ of arbitrarily small curvature. But such a curve (with small curvature) must
intersect itself. Since mean curvature flow does not create self-intersections, we conclude
that C already had self-intersections, which is not allowed (we require our curves to be
embedded).
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[11] Yanki Lekili and Timothy Perutz. Arithmetic mirror symmetry for the 2-torus,
2012. Preprint.

[12] Yankı Lekili and Timothy Perutz. Fukaya categories of the torus and dehn surgery.
Proceedings of the National Academy of Sciences, 108(20):8106–8113, 2011.

[13] James S. Milne. Modular Functions and Modular Forms. 2009. Available at
www.jmilne.org/math/.

[14] Alexander Polishchuk. Massey and fukaya products on elliptic curves, 1998.

[15] Alexander Polishchuk. Homological mirror symmetry with higher products, 1999.

[16] Alexander Polishchuk. A-infinity structures on an elliptic curve. Com-
mun.Math.Phys. 247 (2004) 527-551, 2004.

[17] Alexander Polishchuk and Eric Zaslow. Categorical mirror symmetry: The elliptic
curve. Adv.Theor.Math.Phys.2:443-470,1998, 1998.

[18] Paul Seidel. Graded lagrangian submanifolds. Bulletin de la Société Mathématique
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A. Computing the mirror map

The following Python code (see figure 4) can be used to compute the j-invariant j(τ) of
the mirror curve to arbitrary order, by expanding the relevant theta function formula.
See section 7.1 for more details.

This code uses the free software symbolic computer algebra package Sympy3 for ma-
nipulating power series. One convenient way to run it is to execute sympy in its build
directory, and then load the script using %run series.py. This will automatically com-
pute j(x) to order x. More terms can be computed now using e.g. j.series(x,n=3)

(but this gets slow pretty quickly).

from sympy import ∗

var ( ’ x ’ )

class theta ( Function ) :

nargs = 3

def e v a l n s e r i e s ( s e l f , x , n , logx ) :
i f x != s e l f . a rgs [ 2 ] :

raise ValueError ( ’ s e r i e s expansion not supported ’ )
[ a , b , x ] = s e l f . a rgs
return sum( x∗∗( a ∗( k + b) ∗∗2)

for k in range(−n+1, n) ) + \
O( x∗∗( a ∗(n + b) ∗∗2) , x ) + O( x∗∗( a∗(−n + b) ∗∗2) ,

x )

def b( i ) : return theta (9 , i /S (18) , x )
def a ( i ) : return theta (3 , i /S (6 ) , x )
p = a (0) ∗b (0) + a (3) ∗b (9)
q = a (0) ∗b (6) + a (3) ∗b (3)
u = a (2) ∗b (0) + a (1) ∗b (9)
z = (2∗q+p) /(3∗u)
j = −27∗z ∗∗3∗( z∗∗3+8)∗∗3∗(1− z ∗∗3) ∗∗(−3)
ppr int ( j . s e r i e s (x , n=2) )

Figure 4: Python script series.py to compute the Laurent expansion of j(x).

3See http://sympy.org.
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