- (1) Let $f: S' \to S$ be a morphism of schemes. Write $(-)_+ : Spc(S) \to Spc(S)_*$ for the left adjoint to the forgetful functor, and similarly over S'.
 - (a) Construct a natural transformation $(-)_+ f_* \to f_*(-)_+$.
 - (b) Show that this natural transformation is not always an equivalence. [*Hint:* consider $f = \nabla$: Spec $(k) \amalg \text{Spec}(k) \rightarrow \text{Spec}(k)$.]
 - (c) Let S be noetherian and f a universal homeomorphism. Show that the natural transformation is an equivalence. [*Hint:* show first that if $X \in \text{Sm}_S$ is connected and $F \in \mathcal{S}pc(S)$, then $(F_+)(X) \simeq F(X)_+$.]
- (2) Let \mathcal{C} be a closed symmetric monoidal ∞ -category.
 - (a) Show that $E \in \mathcal{C}$ is invertible if and only if and only if the counit $\underline{\text{Hom}}(E, \mathbb{1}) \otimes E \to \mathbb{1}$ is an equivalence.
 - (b) Show that $E \in \mathcal{C}$ is dualizable if and only if for all $X \in \mathcal{C}$ (respectively for X = E) the canonical map $\underline{\operatorname{Hom}}(E, \mathbb{1}) \otimes E \to \underline{\operatorname{Hom}}(E, E)$ is an equivalence.
 - (c) Suppose C is stable (respectively idempotent complete). Show that the same is true for the full subcategory of dualizable objects.
- (3) (a) Let $R : \mathcal{D} \to \mathcal{C}$ be a functor of ∞ -categories. Show that there is a maximal full subcategory $\mathcal{C}_0 \subset \mathcal{C}$ and a functor $L : \mathcal{C}_0 \to \mathcal{D}$ which is "partially left adjoint to R". (Make sense of this concept.)
 - (b) Consider the category Pr_m^L of pairs (\mathcal{C}, S) where \mathcal{C} is a presentable ∞ -category and S is a class of morphisms in \mathcal{C} which is strongly saturated and of small generation. Show that there is a functor $Pr_m^L \to Pr^L$ which sends (\mathcal{C}, S) to $\mathcal{C}[S^{-1}]$.
 - (c) Show that there is a functor $\mathcal{SH} : \operatorname{Sch}^{\operatorname{op}} \to \mathcal{C}$ at (sending X to the motivic stable category on X.)
- (4) Let S be a scheme and S'/S étale. Show that $Shv_{Nis}(Sm_S)_{/S'} \simeq Shv_{Nis}(Sm_{S'})$.