- (1) For a vector bundle V on a scheme X, smooth over a scheme S, establish an equivalence between Th(V) and $Th(V^*)$ in Spc(S), where V^* denotes the dual vector bundle. [Hint: Let $H \subset V \times V^*$ denote the hyperplane $\varphi(x) = 1$ and show that the two projections $H \to V \setminus 0, H \to V^* \setminus 0$ are both equivalences.]
- (2) Let (X, Z) be a smooth closed pairs over S. Show that $(B_Z X, p^{-1}Z) \to (X, Z)$ is weakly excisive, where $p: B_Z X \to X$ is the blowup of X in Z.
- (3) Let $z = \operatorname{Spec}(k)$ denote the origin of \mathbb{A}_k^n . Construct an isomorphism of k-schemes $D_z \mathbb{A}^n \simeq \mathbb{A}^{n+1}$. Generalize to $D_Z \mathbb{A}_Z^n$, for $Z \in \operatorname{Sm}_S$.
- (4) Let $(X'', Z'') \xrightarrow{g} (X', Z') \xrightarrow{f} (X, Z)$ be morphisms of smooth closed pairs. Show that:
 - (a) If g is weakly excisive, then f is weakly excisive if and only if $f \circ g$ is weakly excisive.
 - (b) If $f \circ g$ and f are weakly excisive, and $Z' \to Z$ is a motivic equivalence, then g is weakly excisive.
 - (c) If $U_{\bullet} \to X$ is a Nisnevich cover and $f_{U_{i_1} \times X^{\dots \times X} U_{i_k}}$ is weakly excisive for all multiindices, then f is weakly excisive.