- (1) Show that for $X \in \mathrm{Sm}_S$, the projection $X \times \mathbb{A}^1 \to X$ is a naive \mathbb{A}^1 -homotopy equivalence.
- (2) Let k be the spectrum of a field and consider $\mathbb{A}^1 \setminus 0 \in \mathcal{P}(\mathrm{Sm}_k)$. Show that this presheaf is motivically local.
- (3) In the category Spc(S), show that the suspension of $\mathbb{A}^1 \setminus 0$ is given by \mathbb{P}^1 .
- (4) Let $U \to V \in \operatorname{Sm}_S$ be an étale morphism. Let $Z \subset U$ be closed (not necessarily smooth), mapping isomorphically to its image in V, also assumed closed. Show that $U/U \setminus Z \to V/V \setminus Z$ becomes an equivalence in Spc(S). What does this have to do with "excision"?
- (5) Show that $L_{\mathbb{A}^1}\mathcal{P}(\mathrm{Sm}_S)$ is equivalent to $\mathcal{P}(\mathcal{C})$, for some ∞ -category \mathcal{C} that you should describe.
- (6) Consider the adjunction

$$\mathcal{P}(\Delta) \rightleftharpoons \mathcal{S}\mathrm{pc}$$

(where the left adjoint is left Kan extension along $\Delta \to *$). Show that the right adjoint is fully faithful. Deduce that the Bousfield localization of $\mathcal{P}(\Delta)$ at the (strongly saturated class generated by the) maps $\{[n] \to [0] \mid n\}$ is $\mathcal{S}pc$.

(7) Let \mathcal{C} be a small category and \mathcal{D} be a presentable category. Set $\mathcal{P}_{\mathcal{D}}(\mathcal{C}) = \operatorname{Fun}(\mathcal{C}^{op}, \mathcal{D})$. Using the tensoring of \mathcal{D} over spaces, construct a tensoring $\mathcal{P}(\mathcal{C}) \times \mathcal{P}_{\mathcal{D}}(\mathcal{C}) \to \mathcal{P}_{\mathcal{D}}(\mathcal{C})$. Prove that, for $c \in \mathcal{C}$, $d \in \mathcal{D}$ and $F \in \mathcal{P}_{\mathcal{D}}(\mathcal{C})$ we have

$$\operatorname{Map}_{\mathcal{P}_{\mathcal{D}}(\mathcal{C})}(c \times d, F) \simeq \operatorname{Map}_{\mathcal{D}}(d, F(c)).$$

[*Hint:* you may wish to consider first the case $\mathcal{D} = \mathcal{P}(\mathcal{E})$.]