(1) Let \mathcal{C} be a small ∞ -category with a Grothendieck topology and $X \in \mathcal{C}$. Make sense of and prove the following:

$$\mathcal{S}\mathrm{hv}(\mathcal{C}_{/X}) \simeq \mathcal{S}\mathrm{hv}(\mathcal{C})_{/X}.$$

- (2) Verify that the family of Nisnevich covering sieves satisfies the axioms of a Grothendieck topology.
- (3) Let X be any scheme. Show that $Shv_{Nis}(\mathcal{E}t_X^{fp}) \simeq Shv_{Nis}(\mathcal{E}t_X)$. (The Nisnevich topology on both sides is defined in terms of possibly infinite covering families.) We denote these two equivalent ∞ -topoi by X_{Nis} .
- (4) If X is qcqs, show that X_{Nis} is also equivalent to the localization of $\mathcal{P}(\mathcal{E}t_X^{fp})$ at the sieves corresponding to finite covering families.
- (5) Let X_{α} be a cofiltered system of qcqs schemes with affine transition maps. Write $X = \lim_{\alpha} X_{\alpha}$ and let $Y_1, \ldots, Y_n \to X$ be a finitely presented Nisnevich cover. Show that there exists an index α_0 and a finitely presented Nisnevich cover $\tilde{Y}_1, \ldots, \tilde{Y}_n \to X_{\alpha_0}$ such that $Y_i \simeq \tilde{Y}_i \times_{X_{\alpha_0}} X$.
- (6) Let X_{α} as above. Show that $X_{\text{Nis}} \simeq \lim_{\alpha} (X_{\alpha})_{\text{Nis}}$. [*Hint:* view this as a colimit in Pr^{L} . First establish the analogous claim for $\mathcal{E}t^{fp}_{(-)}$.]