- (1) Show that the category of groupoid objects in sets (a subcategory of $\operatorname{Fun}(\Delta^{\operatorname{op}}, \operatorname{Set})$) is equivalent to the usual category of groupoids.
- (2) Show that $f: X \to Y \in Spc$ is an epimorphism if and only if $\pi_0(f): \pi_0(X) \to \pi_0(Y)$ is a surjection.
- (3) Let $F \xrightarrow{i} X \to Y \in Spc_*$ be a fiber sequence. Construct an equivalence

$$fib(cof(i) \to Y) \simeq \Sigma \Omega Y \wedge F$$

[*Hint:* you may wish to recall or prove that for pointed spaces A, B the pushout of $A \leftarrow A \times B \rightarrow B$ is $\Sigma A \wedge B$.]

(4) Let \mathcal{C} be a small ∞ -category and $f_i : X_i \to X \in \mathcal{C}$ some collection of maps. Describe the Čech nerve of the map

$$\coprod_{i} y(X_i) \to y(X) \in \mathcal{P}(\mathcal{C})$$

as a subobject of X.

(5) For $X \in Spc$, construct an equivalence

$$\mathcal{S}\mathrm{pc}_{/X} \simeq \mathrm{Fun}(X, \mathcal{S}\mathrm{pc}).$$

[*Hint:* view both sides as a functor of X.] Under this equivalence, describe $\underline{\pi}_1(X) \in Fun(X, Set)$.

- (6) Show that $Spc_{/S^1}$ is equivalent to the category of pairs (X, η) where $X \in Spc$ and $\eta : X \xrightarrow{\simeq} X$ is an autoequivalence. Prove that $Spc_{/S^1}$ has homotopy dimension 1.
- (7) Let \mathcal{P} be a property of morphisms in an ∞ -topos \mathcal{X} . We say the property is *local* if whenever given a cartesian square

$$\begin{array}{ccc} X & \longrightarrow & Y \\ f' & & f \\ Z & \stackrel{p}{\longrightarrow} & W \end{array}$$

with p an epimorphism and $f' \in \mathcal{P}$, also $f \in \mathcal{P}$. Show that equivalences are local.

- (8) Show that epimorphisms are local. More generally, show that n-truncated morphisms are local for every n.
- (9) Let $X \to Y$ be an *n*-connective morphism in an ∞ -topos \mathcal{X} of homotopy dimension $\leq d$. Show that $\operatorname{Map}(*, X) \to \operatorname{Map}(*, Y)$ is (n d)-connective.
- (10) Learn about an example of a non-hypercomplete ∞ -topos.